
Go To Statement Considered Harmful

Edsger W. Dijkstra

Communications of the ACM, marzo 1968

For a number of years I have been familiar
with the observation that the quality of pro-
grammers is a decreasing function of the den-
sity of go to statements in the programs they
produce. More recently I discovered why the
use of the go to statement has such disastrous
effects, and I became convinced that the go to
statement should be abolished from all “higher
level” programming languages (i.e. everything
except, perhaps, plain machine code). At that
time I did not attach too much importance to
this discovery; I now submit my considerations
for publication because in very recent discus-
sions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the pro-
grammer’s activity ends when he has con-
structed a correct program, the process taking
place under control of his program is the true
subject matter of his activity, for it is this pro-
cess that has to accomplish the desired effect;
it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet,
once the program has been made, the ‘making’
of the corresponding process is delegated to the
machine.

My second remark is that our intellectual
powers are rather geared to master static re-
lations and that our powers to visualize pro-
cesses evolving in time are relatively poorly de-
veloped. For that reason we should do (as wise
programmers aware of our limitations) our ut-
most to shorten the conceptual gap between
the static program and the dynamic process,
to make the correspondence between the pro-
gram (spread out in text space) and the process
(spread out in time) as trivial as possible.

Let us now consider how we can character-
ize the progress of a process. (You may think
about this question in a very concrete manner:
suppose that a process, considered as a time
succession of actions, is stopped after an arbi-
trary action, what data do we have to fix in or-
der that we can redo the process until the very

same point?) If the program text is a pure con-
catenation of, say, assignment statements (for
the purpose of this discussion regarded as the
descriptions of single actions) it is sufficient to
point in the program text to a point between
two successive action descriptions. (In the ab-
sence of go to statements I can permit myself
the syntactic ambiguity in the last three words
of the previous sentence: if we parse them as
“successive (action descriptions)” we mean suc-
cessive in text space; if we parse as “(succes-
sive action) descriptions” we mean successive
in time.) Let us call such a pointer to a suit-
able place in the text a “textual index.”

When we include conditional clauses (if
B then A), alternative clauses (if B then A1
else A2), choice clauses as introduced by C. A.
R. Hoare (case[i] of (A1, A2,···, An)),or
conditional expressions as introduced by J.
McCarthy (B1 → E1, B2 → E2, · · · , Bn →
En), the fact remains that the progress of the
process remains characterized by a single tex-
tual index.

As soon as we include in our language pro-
cedures we must admit that a single textual
index is no longer sufficient. In the case that a
textual index points to the interior of a proce-
dure body the dynamic progress is only char-
acterized when we also give to which call of
the procedure we refer. With the inclusion of
procedures we can characterize the progress of
the process via a sequence of textual indices,
the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses
(like, while B repeat A or repeat A until
B). Logically speaking, such clauses are now
superfluous, because we can express repetition
with the aid of recursive procedures. For rea-
sons of realism I don’t wish to exclude them:
on the one hand, repetition clauses can be im-
plemented quite comfortably with present day
finite equipment; on the other hand, the reason-
ing pattern known as “induction” makes us well

1



equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With
the inclusion of the repetition clauses textual
indices are no longer sufficient to describe the
dynamic progress of the process. With each en-
try into a repetition clause, however, we can as-
sociate a so-called “dynamic index,” inexorably
counting the ordinal number of the correspond-
ing current repetition. As repetition clauses
(just as procedure calls) may be applied nest-
edly, we find that now the progress of the pro-
cess can always be uniquely characterized by
a (mixed) sequence of textual and/or dynamic
indices.

The main point is that the values of these
indices are outside programmer’s control; they
are generated (either by the write-up of his pro-
gram or by the dynamic evolution of the pro-
cess) whether he wishes or not. They provide
independent coordinates in which to describe
the progress of the process.

Why do we need such independent coordi-
nates? The reason is —and this seems to be
inherent to sequential processes— that we can
interpret the value of a variable only with re-
spect to the progress of the process. If we wish
to count the number, n say, of people in an
initially empty room, we can achieve this by
increasing n by one whenever we see someone
entering the room. In the in-between moment
that we have observed someone entering the
room but have not yet performed the subse-
quent increase of n, its value equals the number
of people in the room minus one!

The unbridled use of the go to statement has
an immediate consequence that it becomes ter-
ribly hard to find a meaningful set of coordi-
nates in which to describe the process progress.
Usually, people take into account as well the
values of some well chosen variables, but this
is out of the question because it is relative to
the progress that the meaning of these values
is to be understood! With the go to statement
one can, of course, still describe the progress
uniquely by a counter counting the number of
actions performed since program start (viz. a
kind of normalized clock). The difficulty is that
such a coordinate, although unique, is utterly
unhelpful. In such a coordinate system it be-

comes an extremely complicated affair to define
all those points of progress where, say, n equals
the number of persons in the room minus one!

The go to statement as it stands is just too
primitive; it is too much an invitation to make
a mess of one’s program. One can regard and
appreciate the clauses considered as bridling its
use. I do not claim that the clauses mentioned
are exhaustive in the sense that they will sat-
isfy all needs, but whatever clauses are sug-
gested (e.g. abortion clauses) they should sat-
isfy the requirement that a programmer inde-
pendent coordinate system can be maintained
to describe the process in a helpful and man-
ageable way.

It is hard to end this with a fair acknowledg-
ment. Am I to judge by whom my thinking has
been influenced? It is fairly obvious that I am
not uninfluenced by Peter Landin and Christo-
pher Strachey. Finally I should like to record
(as I remember it quite distinctly) how Heinz
Zemanek at the pre-ALGOL meeting in early
1959 in Copenhagen quite explicitly expressed
his doubts whether the go to statement should
be treated on equal syntactic footing with the
assignment statement. To a modest extent I
blame myself for not having then drawn the
consequences of his remark

The remark about the undesirability of the
go to statement is far from new. I remember
having read the explicit recommendation to re-
strict the use of the go to statement to alarm
exits, but I have not been able to trace it; pre-
sumably, it has been made by C.A.R. Hoare.
Wirth and Hoare together make a remark in
the same direction in motivating the case con-
struction: “Like the conditional, it mirrors the
dynamic structure of a program more clearly
than go to statements and switches, and it elim-
inates the need for introducing a large number
of labels in the program.”

Guiseppe Jacopini seems to have proved the
(logical) superfluousness of the go to statement.
The exercise to translate an arbitrary flow dia-
gram more or less mechanically into a jump-less
one, however, is not to be recommended. Then
the resulting flow diagram cannot be expected
to be more transparent than the original one.

2


