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1 Introduction

Membrane computing is a formal computational paradigm, invented in 1998 by
Gh. Păun [5], that rewrites multisets of objects within a spatial structure in-
spired by the membrane structure of living cells and according to evolution rules
that are reminiscent of the processes that take place inside cells. In this paper
we use techniques based on fuzzy sets to develop a general membrane comput-
ing model that takes into account the imperfection of the reactives involved in
computations. I.e., the fact that the actual objects used in computations, as
well as the actual output of the latter, need not be exact copies of the reactives
that are assumed to be used in the computations or to be produced by them
but only approximate copies. This is a generalization of our previous work [1].
Other fuzzy approaches to membrane computing have been proposed in [3, 4, 6].

This work has been partially supported by the Spanish DGES, project
BFM2003-00771.

2 The model

Given an alphabet V , we denote by V ∗ the set of words over V . Given a word
u ∈ V ∗, we denote by |u| the length of u and, given a letter v ∈ V , by |u|v the
number of occurrences of v in w.

A fuzzy subset of a set X is a mapping from X to the unit interval I = [0, 1].
Such a fuzzy subset finite-valued when its image is a finite subset of I. For every
fuzzy subset ϕ : X → I, its t-cut, for every t ∈ [0, 1], is

ϕt = {x ∈ X | ϕ(x) ≥ t}.
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Roughly described, a fuzzy P-system will be a structure similar to a crisp P-
system, supported on a membrane structure that defines regions whose contents
evolve following rules that created, destroy and move reactives. Now, we shall
use reactives as “ideal definitions” of chemical compounds, and hence they are
fuzzy subsets of X: for every reactive v : X → [0, 1], we understand that
v(x) = t denotes that the object x ∈ X is a copy of v ∈ V with a degree t of
exactitude. So, v(x) = 1 means that x is an exact copy of the reactive v, and
v(x) = 0 means that x cannot represent in any way the reactive v. We shall say
that an object x ∈ X is similar to a reactive v ∈ V when v(x) > 0 and we shall
assume in this paper that each object in X is similar to at most one reactive.

As in the crisp case, fuzzy P-systems will be supported by a membrane
structure. Recall that a membrane structure µ is a finite rooted tree whose
nodes are called membranes. We shall always denote by M the set of membranes
of a membrane structure. This tree represents a hierarchical structure of nested
membranes, with the edges representing the relation ‘being directly inside.’ The
tree’s root 1 is then called the skin membrane. We expand every membrane
structure µ by adding a new node to it labelled env and an arc going from 1 to
env; let µ denote the resulting tree and M its set of nodes M ∪{env}. This new
node env is called the environment, because it surrounds the skin membrane.

We understand that every m ∈ M defines a region Km. At each moment,
every such region contains a set of objects. Now, he reactives being fuzzy sets,
the content of these regions at each moment will be formally described by means
of an M -indexed family of fuzzy multisets over a set V of reactives. These fuzzy
multisets specify, for every v ∈ V and for every value t ∈]0, 1], how many objects
in each region Km are copies of the reactive v with degree of accuracy t. They
are ac-fuzzy multisets in the sense of [2].

A configuration for this fuzzy P-system, with set of membranes M and set
of reactives V , will be a family of fuzzy multisets (Fm)m∈M over V ,

Fm : V × I+ → N∞, m ∈ M.

Each such mapping Fm specifies, for every v ∈ V and for every t ∈ I+, how
many objects exist in the region Km such that v(x) = t in a configuration.

Now, fuzzy P system is a structure

Π = (V, µ,mout, (Sm)m∈M , (Rm)m∈M )

where:

• V is the finite set of reactives used by the membrane system.

• µ is a membrane structure, with set of membranes M .

• mout ∈ M is the output membrane.

• (Sm)m∈M is a family of finite fuzzy multisets over V , called the initial

configuration, which describes the initial content of all regions Km.
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• For every membrane m ∈ M , Rm is a finite set of evolution rules associ-
ated to the membrane m.

Each evolution rule in Rm has the form

R = ((c; a → (b,m)), τ, φ),

where:

— c ∈ V ∗ represents the catalysts necessary for the reaction represented
by the rule to take place; the (possibly inexact copies of these) cat-
alysts used to trigger the application of this rule are not modified in
any way by this application.

— a ∈ V ∗ represents the reactives that are processed by the reaction
represented by the rule; we shall call them the active reactives of this
rule. These reactives are spent, destroyed, when the rule is applied.

For simplicity, we assume that, for every v ∈ V , if |c|v > 0, then
|a|v = 0: i.e., any reactive that is a catalyst of a rule cannot be an
active reactive of this rule —although it could be an active reactive
for some other rule in the same region or in another one.

— (b,m) ∈ (V ×(M∪{env}))∗ represents the reactives that are produced
by the reaction represented by the rule, together with the region
where each one of them is placed: every symbol (b′,m′) in this word
means that a (possibly inexact copy of a) new reactive b′ is produced
in the region Cm′ when the reaction represented by this rule takes
place.

We assume that, for every symbol (b′,m′) appearing in the word
(b,m), the membrane m′ is adjacent to m in the expanded tree

(M,E)(env), i.e., m′ is directly included in m or m is directly in-
cluded in m′. If m′ = env, so that m = 1, the object represented by
b′ is moved to the environment, leaving the membrane system and
never coming back (notice that no rule is defined in the environment).

— τ : V → [0, 1] is a threshold function that determines the degree
of similarity to every reactive appearing in c or a necessary for an
object to be considered as such a reactive to the effect of triggering
an application of this rule.

We impose on τ the condition that τ(v) > 0 for every reactive that
is a catalyst or an active reactive of this rule. On the other hand, for
simplicity, we do not impose any threshold on the reactives that are
not either catalysts or active in a given rule: i.e., we assume that, if
v ∈ V is such that |c|v = 0 and |a|v = 0, then τ(v) = 0.

— φ :]0, 1]|c|×]0, 1]|a| →]0, 1] is a function that determines the value of
similarity of all objects produced by the reaction to the reactives
supposed to be obtained (as specified by the word (b,m)) in terms
of the similarity of the actual objects used in it to the catalysts and
active reactives of the rule.
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Given a configuration (Fm)m∈M ,for every m ∈ M we shall denote by Fm[v]
the set of those values t ∈]0, 1] such that Fm(v, t) > 0: these are non-zero degrees
of exactitude of the copies of v that exist in Cm in the moment described by
the configuration.

An evolution rule
R = (c; a → (b,m), τ, φ)

in Rm0
can be triggered in a configuration (Fm)m∈M when, for every v ∈ V ,

∑

t≥τin(v)

Fε(m0)(v, t) ≥ |c · a|v.

This means that there are more copies in Km0
within the degree of accuracy

required by the threshold functions, than the specified quantities.
When a rule

R = (c; a → (b,m), φ, τ)

in Rm0
can be triggered in a configuration (Fm)m∈M , an application of it mod-

ifies this configuration into a new configuration (F ′
m)m∈M , which we call the

result of this specific application. This new configuration is obtained in the
following way. To simplify the notations, let

K(R) = {v ∈ V | |c|v > 0}
A(R) = {v ∈ V | |a|v > 0}

Bm′(R) = {v ∈ V | |(b,m)|(v,m′) > 0}, m′ ∈ M ;

recall that, by assumption, K(R) ∩ A(R) = ∅. For every v ∈ K(R) ∪ A(R), let

`(v) = |c|v + |a|v

and for every m′ ∈ M and for every v ∈ Bm′(R), let

rm(v) = |(b,m)|(v,m).

Now, (F ′
m)m∈M is obtained by performing the following steps:

(1) For every v ∈ K(R)∪A(R), which are the reactives that are either catalysts
or active for R, we choose `(v) objects in Cm0

with degree of similarity
with v at least τ(v). Formally, to do it, for every v ∈ K(R) ∪ A(R), if

Fm[v] ∩ [τ(v), 1] = {tv,1, . . . , tv,hv
}, with tv,1 < · · · < tv,hv

,

then we form a vector

ι(v) = (

pv,1︷ ︸︸ ︷
tv,1, . . . , tv,1, . . .

pv,hv︷ ︸︸ ︷
tv,hv

, . . . , tv,hv
)

such that 0 ≤ pv,j ≤ Fm0
(v, tv,j) for every j = 1, . . . , hv and

∑hv

j=1 pv,j =
`(v).
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This corresponds to choosing pv,1 objects x such that v(x) = tv,1, pv,2

objects x such that v(x) = tv,2, and so on, up to `(v) objects. These
objects (or rather, the number of objects within each degree of similarity
with v) are chosen in a non-deterministic way: forming a different such
vector would correspond to a different application of the rule and hence
it could lead to a different result. Notice also that the actual objects are
unrelevant, only their degree of similarity with v.

(2) We remove from Cm0
the chosen inexact copies of the active reactives of

R. Formally, we define, for every m ∈ M , a mapping F̃m : V ×]0, 1] → N

as follows: F̃m = Fm for every m 6= m0, and

• for every v ∈ A(R),

F̃m0
(v, tv,j) = Fm0

(v, tv,j) − pv,j for every tv,j ∈ Fm[v] ∩ [τ(v), 1]

F̃m0
(v, t) = Fm0

(v, t) if t /∈ Fm[v] ∩ [τ(v), 1]}

• for every v /∈ A(R), F̃m0
(v, t) = Fm0

(v, t) for every t ∈]0, 1].

Notice in particular that F̃m0
(v,−) is not modified for any catalyst of the

rule. This corresponds to the fact that catalysts of a reaction are not
modified by the reaction: they only must be there for the reaction to be
triggered.

(3) Let
tapp = Φ((ι(v))v∈K(R)∪A(R)) ∈]0, 1].

Notice that tapp depends on the rule (the mapping F ) as well as on how
much the chosen objects were similar to the necessary reactives. Now,
to every region Cm with m adjacent to m0 and and for every v ∈ Bm,
we add rm(v) copies x of v with degree of exactitude tapp; notice that,
by assumption, these objects have degree of similarity 0 with any other
reactive v′ 6= v.

Formally, this defines, for every m ∈ M , a mapping F ′
m : V ×]0, 1] → N as

follows:

• for every m′ ∈ M and for every v ∈ Bm′(R),

F ′
m′(v, tapp) = F̃m′(v, tapp) + rm′(v)

F ′
m′(v, t) = F̃m′(v, t) if t 6= tapp

• for every m′ ∈ M and for every v /∈ Bm(R), F ′m′(v, t) = F̃m′(v, t)
for every t ∈ [0, 1].

This last configuration (F ′
m)m∈M is the result of this application of R.

Notice that a given rule may admit several applications to a given config-
uration, yielding different results, depending on the objects chosen in the first
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step. Notice moreover that the resulting objects have a non-zero similarity with
the expected reactives that depends on the rule as well as on the input objects.

Now, as in the classical case, a transition for a membrane system Π consists
of a maximal symultaneous application of rules: all steps (1) corresponding to
rules being applied are perfomed symultaneously, then all steps (2) and finally
all steps (3). The rules applied in a given transition are chosen in a non-
deterministic way (or, in more involved models, in some regulated way), but
so that for every m no further rule in Rm can be triggered simultaneously
to them. In particular, a given rule can be triggered several times in the same
transition, provided enough (inexact) copies of the catalysts and active reactives
are available.

A finite sequence of transitions between configurations of a fuzzy P-system
Π, starting with the initial configuration, is called a computation with respect
to Π. A computation halts when it reaches a halting configuration where no
rule can be triggered.

Given a halting computation C with halting configuration (H(C)m)m∈M ,
the (crisp) multiset over I+ associated to it is

HC : I+ → N

t 7→
∑

v∈Vout
H(C)mout

(v, t)

Thus, for every t ∈ I+, HC(t) is the number of objects in the output region
that, at the end of the computation, are copies of some output reactive with
degree of exactitude t.

Then, the output of a halting computation C will be the fuzzy subset of N

OutΠ,C : N → I
n 7→

∨
{t | HC(t) = n}

In words, OutΠ,C(n) is the greatest degree of exactitude t in I for which, at the
end of the computation C, there exist n objects in the output region that are
copies of some output reactive with degree of exactitude t.

Finally, the fuzzy set of natural numbers generated by a fuzzy membrane
system Π is the join of all the outputs of halting computations with respect to
Π. This is the mapping GenΠ : N → I defined by

GenΠ(n) =
∨

C halting

OutΠ,C(n), n ∈ N.

Thus,

GenΠ(n) =
∨{∨

{t ∈ I+ | HC(t) = n} | C halting
}

=
∨
{t ∈ I+ | HC(t) = n for some halting computation C}.

Notice that, I being finite, this supremum is actually a maximum, and that if
HC(t) 6= n for every halting computation C, then GenΠ(n) =

∨
∅ = 0.
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Theorem 1 A set of finite valued fuzzy natural numbers is r.e. if and only if

it is generated by a fuzzy P system.

The finite-valuedness of the fuzzy subsets of N generated by our fuzzy P-
systems is due to the finiteness of the sets of rules and the initial configuration.

To end this paper, we would like to point out that, although formally correct,
our specific approach has a drawback from the fuzzy mathematics point of view.
The association to a multiset H : I+ → N of the fuzzy subset of N

C(H) : N → I
n 7→

∨
{t | H(t) = n}

that underlies our definition of the output of a halting computation with respect
to a fuzzy P-system is not additive in any natural sense, and in particular it
cannot be considered a fuzzy cardinality [2]. We have tried to use some specific
simple fuzzy cardinalities in this step, and we have obtained that the resulting
fuzzy P-systems did not generate all finite-valued recursively enumerable fuzzy
subsets of N, but we have not ruled out the possibility of using some other,
cunningly chosen, fuzzy cardinality.

Our current research agenda includes this problem, as well as the problem
of getting rid of the assumption used in this paper that an object can only be
similar to one reactive.
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