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Abstract. In the beginning, one of the main fields of application of
graph transformation was biology, and more specifically morphology.
Later, however, it was like if the biological applications had been left
aside by the graph transformation community, just to be moved back
into the mainstream these very last years with a new interest in molec-
ular biology. In this paper, we review several fields of application of
graph grammars in molecular biology, including: the modeling higher-
dimensional structures of biomolecules, the description of biochemical
reactions, the analysis of metabolic pathways, and their potential use in
computational systems biology.

1 Introduction

Once upon a time, biology was one of the main fields of application of graph
transformation, as it is proved by the maiden name (back in 1978) “Workshop on
Graph Grammars and Their Application to Computer Science and Biology” of
the current “International Conference on Graph Transformation.” Those early
applications of graph rewriting in biology mostly belonged to the field of mor-
phogenesis.

It is common knowledge that graphs describe structures in a simplified but
explicit way. In such descriptions, nodes correspond to substructures and arcs
represent relations among substructures. These arcs can be directed if the rela-
tion is so, labelled if one wants to record the kind of relation they stand for, and
so on. On their turn, nodes may be labelled to make explicit what they symbol-
ize, whith labels that may be not only raw names, but also graphs themselves,
or other higher-order objects that can be used to abstract the details of the
substructure represented by the node in hierarchical structures. In any case, the
actual meaning of the nodes and the arcs will depend on the actual application.
Under this graphical representation of structures, the evolution of the latter can
be described by graph rewriting mechanisms, where one or several subgraphs are
replaced by other graphs in a way determined by evolution rules specified in a
graph grammar.
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It was soon noticed that the development states of an organism can be de-
scribed as graphs in this way, with nodes representing for instance cells, body
segments, or tissues, and arcs representing spatial or biological relations among
nodes. The nodes’ labels may be used to denote their type and the arcs’ la-
bels the type of interaction they stand for. The rules governing some aspect
of the development of such an organism can be described in this framework as
graph rewriting rules and gathered in a graph grammar. In a given application,
these rules can be fired simultaneously, in a synchronized way, or following some
priority order. It was precisely the possibility of modelling the development of
organisms where changes and segmentations take place simultaneously at differ-
ent places that lead to the notion of parallel graph grammars, also called graph

L-systems, as a generalization of string L-systems. They were introduced about
thirty years ago by K. Culik and A. Lindemayer [1], previously hinted by B.
Mayoh [2], and they have been used since then in many applications of graph
rewriting in morphogenesis.

This was the first kind of applications of graph rewriting in biology, and
actually the use of graph grammars as models of the development of organisms
is still alive. For instance, Beck, Benkö et al [3] have proposed recently the use of
graph transformation as an alternative to standard morphospace representations
and geometric morphometrics in the field of theoretical morphology.

The success of graph grammars in the description of development pathways
can be seen as a simple instance of their pattern handling power. According to D.
Gernert [4], as soon as patterns are represented as graphs, graph grammars are a
natural tool to describe the fundamental operations related to patterns: pattern
generation, pattern transfer (the duplication of a certain subpattern and its
insertion in a different location), pattern recognition, pattern interpretation (the
influence of certain subpatterns on the behavior of whole system) and pattern
application (the transmission of a certain pattern to another location). A type
of graph grammars specifically tailored to handle patterns was proposed in [5].

Patterns that are conveniently modelled as graphs are found everywhere in
biology, and not only in morphology. Molecular biology is no exception: the inner
structure of chemical compounds [6], the tridimensional structure of nucleic acids
and proteins [7], the chemical reactions [8], the biochemical and metabolical
pathways [9], most formal components of molecular biology can be represented
as graphs. This fact must be added to what is called in sociology of science
“the phenomenon of the earlier tool” [4]: when some branch of mathematics
reaches a high standard or it becomes fashionable, then it will be surely used in
many other sciences.1 Therefore, it should not be a surprise that, with the recent

1 Historians of science put more emphasis on the converse phenomenon, when a prob-
lem in some science gives rise to new a branch of mathematics or gives new life to
an already existing branch; for instance, the theory of Abstract Data Types gave a
boost to universal algebra. . . and H. Ehrig [10] has his share of guilt, in this con-
nection. Graph grammars can also be seen as an example of this phenomenon, as
they were born to solve the problem of specifying the transformation of non linear
structures in software systems.
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thriving of computational molecular biology and computational systems biology,
graph grammars have initiated what will probably become a second silver age
of applications in biology.

The goal of this paper is to overview some applications of graph rewriting
in molecular biology. In the next section we shall write about the modeling
of tridimensional structures of nucleic acids and proteins. In Section 3 we will
cover the modeling of chemical compounds and chemical reactions in artificial
chemistries and then, in Section 4, the application of the latter in the analysis of
biochemical pathways and, in Section 5, in computational systems biology. With
this short survey we want to call the attention of graph-grammarists mostly
oriented to software systems specification and to invite them to catch a glimpse
of a completely different world of possible applications.

2 Higher-dimensional structures of biomolecules

A biomolecule can always be viewed as an oriented chain of monomers, which
in turn can be mathematically described as a string over a suitable alphabet.
This string is called the primary structure of the molecule. For instance, a DNA
or an RNA molecule is a chain of nucleotides, each one of them characterized
by the base attached to it: adenine, A, cytosine, C, guanine, G, or thymine, T ,
(in RNA, thymine is replaced by uracil, U). Thus, the primary structure of a
DNA molecule is a string over {A,C,G, T}, while the primary structure of an
RNA molecule is a string over {A,C,G,U}. In a similar way, proteins are chains
of aminoacids, and hence the primary structure of a protein is a string over a
20-letter alphabet, for instance

{A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y },

each letter representing an aminoacid: A for Alanine, C for Cysteine, D for
Aspartic acid, etcetera.

In the cell and in vitro, each RNA molecule and protein folds into a tridimen-
sional structure, and this is structure what determines its biochemical function.
The understanding of the folding process of these biomolecules and the predic-
tion of their tridimensional structure from their primary structure are two of the
main open questions in molecular biology.

As different levels of graining are suitable for different problems [11], we can
sometimes forget about the detailed description of these tridimensional struc-
tures and consider only a simplified model of them, like for instance their contact
structures. The contact structure [12] of a biomolecular tridimensional structure
is the set of all pairs of monomers that are either consecutive in the chain or,
in some specific sense, neighbors in the structure. Such a contact structure can
be mathematically described as an undirected graph without multiple edges or
self-loops, with sets of nodes representing the monomers numbered according to
their position along the chain and with edges of two types: those that join pairs
of consecutively numbered monomers, which are said to form the backbone of
the contact structure, and the other ones, which are called contacts.
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The secondary structures of RNA molecules form a special class of contact
structures. In them, contacts represent the hydrogen bonds between pairs of non-
consecutive bases2 that hold together the tridimensional structure. A restriction,
called the unique bonds condition, is added to the definition of RNA secondary
structure [7]: a base can only pair with at most another base. It is usual to impose
a final restriction on RNA secondary structures, by forbidding the existence of
knots, i.e., of contacts that “cross” each other. This restriction has its origin in
the first dynamic programming methods to predict RNA secondary structures [7,
13], but real RNA structures can contain knots, which are moreover important
structural elements of them [14]. Contact structures with unique bonds and knots
can also be used to represent the local basic building blocks of protein structures,
like α-helixes or β-sheets, often called protein secondary structures.

Beyond secondary structures, the representation of the neighborhood in tri-
dimensional structures of RNA molecules and proteins needs contact structures
without unique bonds. The full contact structure of an RNA molecule may con-
tain sets of contacts that violate the unique bonds condition, like base triplets
and guanine platforms [15, 16], and in the contact structure of a protein, one
aminoacid is usually an spatial neighbor of several aminoacids [17, 18].

Although the theory of formal languages was born in the 1950s, and then
almost simultaneously to modern molecular biology (recall that F. Crick and
J. Watson discovered DNA’s double helix in 1953 and N. Chomsky published
Syntactic structures in 1957), it was not until the 1980s that formal grammars
methods started to be applied to biomolecular sequences [19]. A little later it was
also noticed that string grammars could also be used to model and study not only
the primary structure of biomolecules, but also certain aspects of their contact
structures, as for instance secondary structures of RNA molecules [20, 21]. In
these approaches, an RNA secondary structure is represented by a derivation tree
of a certain context free grammar, while RNA contact structures with unique
bonds and knots must be generated by new types of string grammars [22]. Many
more works have focused on secondary structures, or, more in general, contact
structures with unique bonds, which can be easily described as strings over a
complemented language. There have also been a few attempts to model and study
simple aspects of the secondary structures of proteins using string grammar
methods. Two typical examples are the SMART [23] and the TOPS [24] systems.

The goal of the representation of contact structures of biomolecules by means
of grammars is to contribute to both main questions about contact structures of
biomolecules mentioned above. From the theoretical point of view, one expects
to deduce properties of their folding mechanisms from the performance of these
grammars and the accuracy with which they generate real structures. In this way,
these grammars would yield to a better understanding of the folding process of
nucleic acids and proteins. From the practical point of view, stochastic versions of
these grammars can be used to predict contact structures. Recall that a stochastic

grammar specifies a probability for each production, and in this way it assigns

2 Actually, a hydrogen bond can only form between bases that are at least four posi-
tions apart in the chain.
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a probability to every derivation. Once a grammar is trained, i.e., its probability
parameters are tuned on a set of training examples, it can be used to predict the
contact structure corresponding to a given primary structure as the most likely
derivation of a structure with this primary structure. In the case of string regular
grammars, this last step can also done using the very popular, and equivalent,
formalism of Hidden Markov Models [25], while in the case of stochastic context-
free grammars ad-hoc parsing methods are used [26].

Nevertheless, it is clear that it will be difficult to go beyond these results
using string grammars in the study of protein structures, because of their high
complexity [27]. As contact structures of proteins are graphs, the clear candidate
to generate them are graph grammars.

There have been several important advances in the theoretical study of the
protein folding problem using graph grammars in a hidden way. In these ap-
proaches, “rules take the form of local structure generators, from which struc-
ture evolves via iterative application of elementary steps” [29, p. 409]. Actually,
the first rule-based approach to protein folding [30] dates of 1977, and consists
of several explicitly described composition rules for the formation, growth and
coalescence of β-sheets that could perfectly be formalized as graph rewriting
rules. Another description of the formation of protein domains3 and their rel-
ative position as the result of the hierarchical application of explicit rules that
are reminiscent of graph transformation rules is due to Lesk [31]. Rule-based
descriptions of folding processes of RNA molecules have also been proposed [32,
33].

A paradigmatic, and very interesting, work in this line of research is Przyty-
cka et al’s rule-based description of a certain class of protein contact structures,
the so-called all-β proteins, that admit a high variety of topologies and are dif-
ficult to predict from their primary structure. These researchers use a grammar
consisting on four composition rules, or rather four families of composition rules,
motivated by biophysical considerations that make them conjecture that their
rules have physical correlates in the actual mechanism of protein folding [29].
Contrary to all previous rule-based approaches to protein contact structures,
their rules are explicitly presented as a graph grammar. For the purpose of this
grammar, all-β proteins are represented by graphs with nodes corresponding to
β-sheets and two types of edges: there are domain edges, that are generated by
the application of the folding rules and combine the β-sheets to generate more
complex folds, and neighbor edges, that represents the spatial juxtaposition of
non-consecutive β-sheets after the application of a rule by means of a closure
operation that can also be represented by a graph rewriting rule. The start graph
has only neighbor edges between consecutive β-sheets and no domain edge, and
successive applications of the rules group β-sheets by means of domain edges into
more complex domains and connect β-sheets that are distant in the sequence but
that become juxtaposed in space due to spatial restrictions. Figure 1 displays a
derivation of this graph grammar, extracted from [29].

3 A domain of a protein is a piece that folds into a stable higher order contact structure.
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allbetasheet.epsf

Fig. 1. A derivation of Przytycka et al’s grammar

What can the graph grammar community bring to this line of research? To
our opinion, it is the biologists’ task to propose new rules of formation of contact
structures of RNA molecules and proteins, but graph-grammarians could and
should collaborate, among other tasks, in formalizing these rules and analyzing
the redundancies that appear in the grammars; in determining the properties,
for instance related to parallelism and concurrency, of the rewriting systems they
define, which might lead to uncovering properties of the real folding process; and
in developing general methods to characterize the sets of structures generated by
any given set of biomolecules’ folding rules, i.e., to determine which structures
are possible and which ones are not under any set of folding mechanisms, which
might give new insights not only on folding processes but also on the evolution
mechanisms.

As far as the prediction of protein contact structures goes, Abe and Mamit-
suka [34] proposed in 1997 a stochastic tree grammar to predict β-sheets in a way
similar to those developed for RNA secondary structures using string grammars
that we recalled above. Stochastic versions of more general graph grammars will
be necessary to predict contact structures of RNA molecules and proteins beyond
secondary structures using this kind of methods. To do that, one should find a
set of rules, perhaps in the spirit of those discussed in the previous paragraphs,
that capture the formation of the different components of the contact structures
of the target biomolecules as well as their relation; one should develop an efficient
technique to estimate the grammar’s parameters from a set of training graphs;
and one should devise an efficient method to find the most probable structure
of a protein given the grammar.
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3 Artificial chemistry

Roughly speaking, an artificial chemistry [35, 36] is a computational model of a
chemical system. It consists of a set (a soup) of objects, called molecules, a set
of reaction rules that produce new molecules from already existing molecules,
and the definition of the dynamics of the system, that specifies the application
conditions of the rules, the preference in their application, etc. Against other
types of computational models, the goal of an artificial chemistry is to answer
qualitative, rather than quantitative, questions: the existence of steady, or closed
and self-maintaining, states, the size and diversity of the soup at some moment,
etc.

The nature of the molecules, the reactions, and the dynamics of an artifi-
cial chemistry can be quite diverse. For instance, in one of the first artificial
chemistries, Walter Fontana’s AlChemy [37], objects were λ-terms, a reaction
consisted of the application of the first λ-term to the second one, and the dy-
namics followed a combination of randomness (in the selection of the pair of
molecules) and an explicit algorithm (to decide whether the reaction took place
or not).

Now, although artificial chemistries can be, and have been, used to model
many kinds of systems, their primary targets are ‘real’ chemistries, in which case
molecules should be representations of chemical compounds, and reaction rules
of chemical reactions. Now, chemical descriptions of ‘real’ molecules can be made
at different levels of resolution:

– A molecular descriptor uniquely identifies a molecule in a biochemical data-
base. For instance, beta-D-Glucose is entry number C00221 in the KEGG
database [38].

– A molecular formula indicates the number of each type of atom in a molecule.
For instance, beta-D-Glucose has the molecular formula C6H12O6.

– A constitutional formula or chemical graph indicates which pairs of these
atoms are bonded. For instance, beta-D-Glucose has the following chemical
graph displayed in Figure 2.

CH

CH

OCH2

CHHO

CHHO

CH

OH

OH

OH

Fig. 2. Beta-D-Glucose’s chemical graph.
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– A structural formula refines a chemical graph by indicating those stereo-
chemical distinctions that are required to uniquely identify a molecule. For
instance, Figure 3 downloaded from the KEGG database, displays the struc-
tural formula of beta-D-Glucose; in it, plain lines depict bonds approximately
in the plane of the drawing, bonds to atoms above the plane are shown with
a bold wedge, and bonds to atoms below the plane are shown with short
parallel lines.

C00221.ps

Fig. 3. Beta-D-glucose’s structural formula.

This representation allows to distinguish beta-D-Glucose from other chemi-
cal compounds with the same chemical graph. D-glucose and L-glucose are
mirror images and therefore they share the same chemical graph. Further,
there are two possible orientations for the upper-right OH group, which is
linked to the CH group number 7 in the ring structure: below the plane of
the drawing (alpha-D-glucose) and above the plane of the drawing (beta-D-
glucose).

A chemical description at the level of molecular descriptors and molecular
formulas is useful for database retrieval purposes, and they can be used in an
artificial chemistry when the knowledge of the structure of the chemical com-
pounds is not necessary. In this case, molecular descriptors and formulas play the
roles of simple labels, but then chemical reactions cannot be defined by means
of local interactions of the atoms of the substrate’s molecules.

Chemical graphs are probably the natural and the most familiar representa-
tion of molecules [39]. In first course Organic Chemistry classes, chemical reac-
tions are explained in terms of constitutional formulas and a handful of reaction
mechanisms, which corresponds to (chemical) graphs and rules to modify them
by means of breaking, forming and changing the type of bonds. This leads in a
natural way to artificial chemistries based on labelled graphs as molecules and
graph transformation rules as reactions.

Several such artificial chemistries have been proposed so far. J. McCaskill
and U. Niemann [40] proposed in 2000 a artificial chemistry for DNA and RNA
processing based on graph transformation. In it, molecules are labelled graphs
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of a specific type, called variable graphs, that can represent nucleotides, nucleic
acid single or double strands, or sets of all the latter. The reaction rules represent
several types of chemical reactions: unimolecular (only one molecule is involved),
bimolecular (two molecules react together) and enzymatic (a special type of uni-
molecular reaction that represents the attachment or the removal of an enzyme
in a specific position of a molecule). These reaction rules are graph transforma-
tion rules that act in the usual matching-replacement-embedding way, in a way
reminiscent of single-pushout approach [41]: when a node is removed, all nodes
adjacent to it are also removed. All other reactions, including complex enzymatic
reactions, can be decomposed into a series of applications of these reaction rules.
The dynamics of the system simply consists of performing all possible reactions
through a branching process to obtain all possible derivation paths. The final
goal is to predict all libraries of nucleic acids arising from a given set of strands
by means of a given set of enzymatic reactions. The authors have implemented
their artificial chemistry in a computer program called MOLGRAPH.

More recently, an artificial chemistry for organic chemistry called the Toy

Model has been developed by G. Benkö, C. Flamm and P. Stadler [39, 42, 43].
In it, and following [44], molecules are orbital graphs: undirected graphs with
nodes representing outer atom orbitals, labelled by the atomic element and the
hybridization type of the orbital, and edges representing overlaps of adjacent
orbitals. These orbital graphs represent sets of chemical compounds and they
are uniquely determined by the chemical graphs of the chemical compounds, but
they moreover incorporate chemically meaningful energy functions that allow the
computation of reaction energies.

The reactions rules translate to this level of abstraction the basic organic
reaction mechanisms as graph transformation rules that preserve the vertex la-
bels and the total degrees of corresponding nodes, to capture the conservation of
atoms and valences in organic reactions. These graph rewriting rules are actu-
ally double pushout production rules [45] over orbital graphs: the left-hand side,
context, and right-hand side are orbital graphs with the same labelled nodes;
the left-hand side graph represents the substrate, the right-hand side graph rep-
resents the product and the context graph has as edges those appearing in both
the substrate and the product with the same type.

Consider,4 for example, the Diels-Alder reaction [46], one of the most impor-
tant reactions in organic chemistry. The substrate of the reaction, 1,3-butadiene
(C4H6) and ethylene (C2H4), is combined to form cyclohexene (C6H10), as de-
scribed by the double-pushout transformation rule displayed in Figure 4.

A forward application of the previous double-pushout transformation rule
to 1,3-butadiene (C4H6) and dihydro-2,5-furandione (C4H4O3) to form 1,3-iso-
benzofurandione (C8H8O3), corresponds to the double-pushout transformation
in Figure 5.

In this artificial chemistry, the rules can be applied randomly, or according to
the reactivity index of the matching step computed using suitable formulas, that

4 Usually, hydrogen atoms and the corresponding bonds are not represented explicitly
in constitutional formulas.
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Fig. 4. The Toy model double-pushout rule for the Diels-Adler reaction
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Fig. 5. A reaction in the Toy model

can for instance be translated into a reaction rate constant. This graph rewriting
system has been implemented in Maude as a client/server application. The final
goal is again to compute extensively all possible results of any specific instance
of this artificial chemistry, in this case under the form of large chemical reaction
networks defined by an initial set of molecules and the set of allowed reactions.
We shall talk more on chemical networks, which are graphs themselves, in the
next section.

We have recently started to develop an artificial network based on graph
grammars[47, 48], also with the final aim of studying biochemical networks. In
our approach, and following Fujita’s imaginary transition structures[49, 50, 8] to
model chemical reactions, molecules are generalized chemical graphs: chemical
graphs with possibly some extra edges labelled 0 and reactions are described as
edge relabeling graph transformation rules. These reactions can be explicit and
implicit.

An explicit chemical reaction is an undirected graph (without multiple edges
or self-loops) whose nodes are labeled by means of chemical elements and whose
edges are labeled by the combination of two natural numbers: a substrate weight

and a product weight. No edge can have both substrate and product weights
equal to zero and, for all nodes, the total substrate weight cannot be equal to
zero and must coincide with the total product weight, over all edges incident
with the node.

For instance, in the aforementioned Diels-Alder reaction, there are six carbon
atoms involved, one single bond (which is turned into a double bond), and three
double bonds (which are turned into single bonds). Further, two new bonds are
created. Thus, the following explicit chemical reaction models the Diels-Alder
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reaction, where a label of the form x : y next to an edge means that the edge
has substrate weight x and product weight y:

C

C

C

C

C

C

2 : 1 0 : 1

1 : 2

2 : 1 0 : 1

2 : 1

An application of a generalized chemical reaction replaces the substrate
weights by the product weights in the matching subgraph. For instance, an ap-
plication of the previous explicit chemical reaction to 1,3-butadiene (C4H6) and
dihydro-2,5-furandione (C4H4O3) to form 1,3-isobenzofurandione (C8H8O3), cor-
responds to the following edge relabeling graph transformation:
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On its turn, an implicit chemical reaction is a compact representation of an
explicit chemical reaction by means of a finite set of elementary edge relabeling
operations that, when applied to a graph taking into account that the total
degree of each node must remain constant and that no arc labeled 0 can still be
labeled 0 after the application, determine uniquely the product chemical graph.
Since the undirected graph underlying the substrate chemical graph is finite,
such a minimal set of edge relabeling operations will always exist, although it
need not be unique. Our conjecture is that any implicit chemical reaction, at
least for reactions with molecules only involving hydrogen, oxygen, nitrogen and
carbon, is given by any one of the relabeling operations in an explicit chemical
reaction, but we still have not been able to check it.

We have implemented our generalized chemical graphs and reactions on top
of PerlMol, but we still have not defined the dynamics of our artificial chemistry.

4 Analysis of Metabolic Pathways

Metabolism is one of the most complex cellular processes. Cells function as or-
ganized chemical engines carrying out a large number of transformations, called
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bioreactions or biochemical reactions, in a suited behavior. One of the interact-
ing molecules in a reaction might act only as a catalyst, that is, it facilitates
the association of several molecules to form a compound, and it decreases the
energy barrier required for the bond rearrangements that establish a reaction.
But in the end the molecule itself separates from the compound and returns
to its original state, the law of conservation of mass states: Atoms are neither
created, nor destroyed, during any chemical reaction.

Enzymes are proteins, that is, macromolecules consisting of a long sequence
of compounds called amino acids. The structure of each enzyme is encoded in
the cell’s genome by a gene. In order for an enzyme to catalyze a reaction, the
molecules on which it acts, called substrates, must have just the right structures
and orientations to interact with the intricate 3-dimensional shape of the enzyme
[6].

Four major factors influence the rate at which enzymes work:

1. Enzyme concentration: Influencing the rate of a biochemical reaction by
changing the enzyme compound is expensive in terms of energy. The cell has
to make complex enzyme molecules from simpler ones; this process involves
the consumption of energy and time and may, therefore, be unsatisfactory
for urgent response.

2. pH and Temperature variation: External (outside the enzyme) conditions
are likely to be most inuential within the body or cell of an organism. The
wide range of pH and temperature variation in a laboratory test tube may
have little relevance to an organism in which body temperature and pH are
closely controlled.

3. Substrate concentration: A high substrate concentration may increase the
rate of enzyme action to ensure its rapid breakdown. A high product con-
centration may also inhibit enzyme action so that less product is formed.

Biochemical pathways such as metabolic, regulatory, and signal transduction
pathways, are often described in symbolic terms, as a succession of transforma-
tions of one set of molecules (called reactants) into another set (called products);
reactants and products are collectively referred to as metabolites [7, 9].

Metabolites are classified as internal or external according to whether or
not they are to satisfy the quasi-steady-state condition, that is, the total rate
of production of each internal metabolite equals the total rate of its consump-
tion. In contrast, external metabolites do not satisfy this condition because they
participate in additional reactions that are not involved in the system under
study [51].

The analysis of metabolic pathways is a fertile field because of, among other
reasons:

1. The completion of genomes has made the comparison of complete metabolic
pathways possible, and its analysis across species [1] applies to:
– Understanding the evolutional relationships between species.
– Development of species-specific drug targets.
– Identification of previously unknown parts of pathways in a species.
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2. It represents a natural step up in modeling of biological systems relative to
the study of biological macromolecules [2].

3. Modeling is important in guiding the biotechnological engineering of cells to
maximize the industrial output of specified products [2].

The mathematical analysis of metabolic pathways has been approached through
a large sort of techniques contemplating distinctive objectives and hope. Metabolic
pathways can range in size from involving a few enzymes and metabolites to the
complete pathway of an organism that can have thousands of them [2].

Some of these approaches are: (...)
Metabolism is the general term for all the chemical reactions in the body.
Metabolic pathways are represented in a natural way as directed graphs,

with the substrates, products, and enzymes as nodes and the chemical reactions
catalyzed by the enzymes as arcs.

5 Computational systems biology

Term rewriting systems have also been used to define biochemically inspired
computational systems [52].

Pathway logic,
[53] [54]
ciliats

6 Conclusion

Everybody has in his or her mind some case where a problem in some science
has given rise to new a branch of mathematics, or at least has given new life to
an already existing branch: for instance, the theory of Abstract Data Types gave
a boost to universal algebra,5 which otherwise perhaps would not have survived
as an active field of research. But the reciprocal phenomenon has also happened,
usually at a lower level, and it is called “the phenomenon of the earlier tool”
in sociology of science [4]. When some branch of mathematics reaches a high
standard then it will be surely used in many other sciences, specially in those
that are fashionable a that moment, be it because of pure scientific reasons, or
because of funding reasons; many methods of algebraic geometry have entered
physics in this way in the 1980s, but also the surge of applications of physics in
biology after the World War II has a certain component of this effect.

Graph rewriting was born more than 30 years ago with an eye on its ap-
plications, but since then it has become a very popular mathematical field of
research in theoretical computer science. The obvious fact that graphs can be
used to model many kind of structures, and hence graph rewriting can be used
to model the transformation of these structures, with some contribution of the
phenomenon of the earlier tool, have made graph rewriting to find many appli-
cations, including in molecular biology.

5 And H. Ehrig [10] has his share of guilt, here!
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Regarding the description of biochemical reactions, an interesting open prob-
lem consists in the automatic detection of the difference between candidate sub-
strate and product molecules, which would lead to the automatic construction
of chemical reaction graphs from a large database of chemical graphs.

It could be interesting to study application and uniqueness conditions for
implicit chemical reactions.
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