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Dept. of Mathematics and Computer Science, Research Institute of Health Science
(IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca (Spain)

E-mail: {jaume.casasnovas,cesc.rossello}@uib.es

Abstract

Let d be a metric on the set FP(X) of fuzzy subsets of a finite set X. A midpoint
of two fuzzy subsets µ, ν ∈ FP(X) is any fuzzy subset ξ ∈ FP(X) such that
d(ξ, µ) = d(ξ, ν) = 1

2d(µ, ν). These midpoints can be used to represent “middle
ways” or “compromises” between two situations described by the fuzzy subsets
µ and ν. Now, the imprecise knowledge of a nucleic acid or protein sequence of
length N can be modeled by means of a fuzzy biopolymer, a fuzzy subset of a kN -
element set with k the number of bases, 4, in the case of nucleic acids, and of amino
acids, 20, in the case of proteins. Thus, a midpoint of two fuzzy biopolymers of
the same length can be understood as an average of the knowledge of the sequences
represented by them. In this paper we explicitly describe the midpoints of two fuzzy
biopolymers with respect to distances obtained by aggregating, through several
suitable mappings, metrics on each position of the sequences represented by the
fuzzy biopolymers.

Key words: Distance, metric, midpoint, fuzzy polynucleotide, profile, fuzzy
polypeptide.

1 Introduction

There are many situations where it is useful to discern those fuzzy subsets that
can be considered as “middle ways” or “compromises” between two given fuzzy
subsets of a given finite set. For instance, a patient’s symptoms profile can be
described by means of a fuzzy subset of the set of attribute variables taken
into account, and the ensemble of middle ways between two such descriptions

1 This work has been partially supported by the Spanish DGES projects BFM2000-
1113-C02-01 and BFM2003-00771.
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of a given patient, for instance provided by two independent raters, can be
used as a new representation of the patient [3].

These middle ways between two fuzzy subsets have been formalized by Nieto
and Torres [16] by means of (fuzzy) midpoints. A midpoint of two fuzzy subsets
µ, ν of a finite set X is any fuzzy subset ξ of X whose distance to µ and ν
is exactly half the distance between these two fuzzy subsets. Of course, the
actual content, and the range of application, of this definition depends on the
chosen distance between fuzzy subsets of X [1,15].

If we consider the euclidean distance d(µ, ν) =
√

∑

x∈X(µ(x) − ν(x))2, then
we know from euclidean geometry that any two fuzzy subsets µ and ν of
X have one, and only one, midpoint: half their sum. For other distances,
like the one introduced by Nieto et al. to compare polynucleotides [17], the
Canberra metric [12] and Pappis-Karacapilidis metric [18], there exist pairs of
fuzzy subsets without midpoints. Finally, there are well-known distances with
respect to which most pairs of fuzzy subsets have infinitely many midpoints,
like for instance the Hamming and maximum distances [3,16].

We propose in this paper a new application of midpoints with respect to
suitable distances, as averages of fuzzy polynucleotides or fuzzy polypeptides
of the same length. A fuzzy polynucleotide, or also a fuzzy genome, 2 of length
N is simply a vector in Kosko’s 4N -dimensional hypercube [0, 1]4N , which
can then be identified with a fuzzy subset of a 4N -element set. Sadegh-Zadeh
[21] introduced them as models of imprecisely known nucleic acid sequences
of length N : the first four entries of the vector represent our knowledge of the
extent to which the first base in the sequence is, respectively, an A, a C, a G
or a T (U, in RNA); the next four entries represent the same for the base in
the second position of the sequence; and so on. For instance, our knowledge of
the composition of a codon (a DNA or RNA sequence of length N = 3) could
be represented by a 12-dimensional vector

(1/3, 2/3, 0, 0, 0, 0, 1, 0, 1/3, 1/6, 1/3, 1/6).

In this vector we read that the first base in the codon cannot be a G, that the
third base is C to the extent 1/6, and so on. This vector could be thought as
representing the codons coding for the amino acid Arginine, as it assigns to
each base and each position the relative frequency of this base at this position
in these codons: CGA, CGC, CGG, CGU, AGA, AGG.

2 Sadegh-Zadeh used the term “fuzzy genome” when he introduced this concept,
but some colleagues have expressed to us that they feel its use misleading, as the
word “genome” has the connotation of referring to the complete DNA sequence of
an individual or a species, while the notion of fuzzy genome even includes single
nucleotides.
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In a similar way, a fuzzy polypeptide of length N would be a representation, in
the sense described above, of an imprecisely known protein sequence of length
N as a vector in [0, 1]20N . To simplify the language, we shall use the term
fuzzy biopolymer to refer simultaneously to fuzzy polynucleotides and fuzzy
polypeptides.

The fuzzy polynucleotide displayed above can be thought to belong to a class
of fuzzy biopolymers that is often used in computational biology: the profiles.
A profile is a representation of a group of related nucleic acid or protein se-
quences, usually based on a multiple alignment of these sequences [4]. Once
the multiple alignment is defined, the profile is constructed by counting the
occurrences of each monomer (bases in nucleic acids, amino acids in proteins)
at each position along the multiple alignment and dividing these counts by
the total number of sequences. Sometimes pseudocounts are introduced so that
no monomer has a zero value assigned at any position, and other variations
have also been used. For more information on profile derivation techniques, see
[7,9]. A similar representation of multiple alignments are the position specific

scoring matrices, PSSMs [8], where the numbers of monomers at each position
are computed using position-based sequence weights and then they are nor-
malized by the expected frequencies of the corresponding monomers. Profiles
and PSSMs are usually given by means of matrices, with columns represent-
ing the positions in the sequence and the rows representing the monomers
in some prefixed order. If we reorganize these matrices by concatenating the
rows, considered as vectors of length 4 (in the nucleic acid setting) or 20 (in
the protein setting), we obtain a fuzzy polynucleotide or a fuzzy polypeptide.

The comparison of profiles has been an important topic in computational
biology. Some papers, like for instance [6,10,24], use iterative methods or dy-
namic programming algorithms for the construction of profile-profile align-
ments. Other papers, like [14,19], simply measure the profiles’ similarity using
some simple formulas like distances or correlation coefficients. Moreover, Tor-
res and Nieto [22] have shown the interest of the comparison of fuzzy polynu-
cleotides not necessarily arising from multiple alignments.

In this paper we consider very simple families of distances between fuzzy
biopolymers, obtained by using a metric to measure the similarity at the level
of each position of the content of the sequences represented by the fuzzy
biopolymers, and then a suitable mapping to aggregate the values obtained
in this way. Similar metrics have already been used by other authors to align
profiles [10], and we believe that the asymmetrical definition of fuzzy biopoly-
mers, where each consecutive group of a fixed number of consecutive entries
represents a different position, motivates this kind of construction. In partic-
ular, this allows to assign different weights to the different positions in the
sequences.
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For the metrics we consider, we compute the midpoints of two fuzzy biopoly-
mers of the same length to capture what could be considered an average of
two such fuzzy biopolymers. In particular, we obtain explicit descriptions, as
regions in a unit hypercube of a suitable dimension, of the sets of midpoints of
two fuzzy biopolymers of the same length with respect to distances obtained
by aggregating euclidean, Hamming or maximum distances on each position
by means of a weighted sum, a weighted maximum mapping, or a weighted
euclidean norm.

These sets of midpoints of fuzzy biopolymers can have several applications.
A first, generic application of midpoints is the comparison of pairs of fuzzy
subsets of a given set [3]. Given two pairs (µ1, µ2) and (ν1, ν2) of fuzzy subsets
of a given set X, for instance two pairs of profiles of the same length, and
a metric d on the set of fuzzy subsets of X, one can measure the similarity
of (µ1, µ2) and (ν1, ν2) under d by computing the average value of d between
the sets of midpoints of (µ1, µ2) and of (ν1, ν2) with respect to this metric.
Another application of midpoints of fuzzy biopolymers could be the simple
refinement of multiple alignments. More specifically, assume for instance that
we are given two multiple alignments of the same length. Then any multiple
alignment of the union of a subset of each one of these sets of sequences whose
profile is a midpoint of the profiles of the original pair of alignments, could be
understood as a consensus of this pair. We are currently working on this line
of research, and we hope to report on it in a near future.

2 Preliminaries: midpoints and segments

Let us fix from now on a finite, n-element set

X = {x1, . . . , xn};

we understand its elements ordered by the subscripts. Let FP(X) denote the
set of its [0, 1]-valued fuzzy subsets. To simplify the notations, given a fuzzy
subset µ, ν, . . . of X, we shall write µi, νj, . . . instead of µ(xi), ν(xj), . . ..

The mapping sending every µ ∈ FP(X) to the vector (µ1, . . . , µn) ∈ [0, 1]n

is a bijection FP(X) ∼= [0, 1]n, and it allows to identify, in a one-to-one way,
every fuzzy subset of X with a point of Kosko’s n-dimensional hypercube
[11]; hypercubical calculus has been described in [25]. To ease the language,
in practice we shall systematically carry out this identification between fuzzy
subsets and vectors, usually without any further notice.

This identification allows the translation of operations and distances on [0, 1]n

into operations and distances on FP(X). So, for instance, given µ, ν ∈ FP(X)
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and t ∈ [0, 1], by t · µ + (1 − t) · ν ∈ FP(X) we denote the fuzzy subset of X
defined by

(t · µ + (1 − t) · ν)i = tµi + (1 − t)νi for every i = 1, . . . , n.

In this work we shall mainly be concerned with the following three basic
distances on FP(X), which can be understood as translations of well known
metrics on [0, 1]n:

• The euclidean distance d2(µ, ν) =
√

∑n
i=1(µi − νi)

2.
• The Hamming distance dH(µ, ν) =

∑n
i=1 |µi − νi|.

• The maximum distance d∞(µ, ν) =
∨n

i=1 |µi − νi|.

Let now d be any distance on FP(X). For every µ, ν ∈ FP(X), a fuzzy subset
ξ ∈ FP(X) is a midpoint of µ and ν with respect to d if and only if

d(ξ, µ) = d(ξ, ν) =
1

2
d(µ, ν).

Let midd(µ, ν) ⊆ FP(X) denote the set of all midpoints of µ and ν with
respect to d.

The sets of midpoints with respect of several distances have been considered
so far in the literature. In particular, they have been computed for the three
distances introduced above. Specifically, for every µ, ν ∈ FP(X):

• It is well known from euclidean geometry that

midd2(µ, ν) = {
µ + ν

2
}.

• It is proved in [3,16] that, if we let

I+ = {i | µi < νi}, I− = {i | µi > νi},

then middH
(µ, ν) consists of those ξ ∈ FP(X) that satisfy the following two

conditions:
· min{µi, νi} ≤ ξi ≤ max{µi, νi} for every i = 1, . . . , n.
·

∑

i∈I+ ξi −
∑

i∈I− ξi =
∑

i∈I+
1
2
(µi + νi) −

∑

i∈I−
1
2
(µi + νi).

In particular, if µi = νi and ξ ∈ middH
(µ, ν), then ξi = µi = νi.

• It is proved in [3] that midd∞(µ, ν) consists of those ξ ∈ FP(X) such that,
for every i = 1, . . . , n,

max{µi, νi} −
1

2
d∞(µ, ν) ≤ ξi ≤ min{µi, νi} +

1

2
d∞(µ, ν).

In particular, if |µi − νi| = d∞(µ, ν) and ξ ∈ midd∞(µ, ν), then ξi = (µi +
νi)/2.
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Notice that

midd2(µ, ν) ⊆ middH
(µ, ν), midd2(µ, ν) ⊆ midd∞(µ, ν).

In general, these inclusions are strict and, furthermore, there is no relationship
between middH

(µ, ν) and midd∞(µ, ν).

Example 1. A vector with entries the frequencies of the four nucleotides A,
C, G and T (in this order) in some specific region of a genome is a point of
[0, 1]4 and hence it can be understood as a fuzzy subset of a 4-element set. For
instance, and according to [22], these frequencies in the coding region of the
Mycobacterium tuberculosis H37Rv are given by the vector

µMT = (
702492

3971522
,
1283724

3971522
,

672608

3971522
,
1312698

3971522
)

≈ (0.1693, 0.3232, 0.3304, 0.1771),

while these frequencies in the coding region of the Escherichia coli K-12 are
given by the vector

µEC = (
985105

4025952
,

976160

4025952
,

976676

4025952
,
1088011

4025952
)

≈ (0.2425, 0.2424, 0.2704, 0.2447).

Then (within this degree of approximation):

• midd2(µMT , νEC) consists simply of

(0.2059, 0.2828, 0.3004, 0.2109) ∈ [0, 1]4.

• middH
(µMT , νEC) is the intersection of the hyperprism

[0.1693, 0.2425] × [0.2424, 0.3232] × [0.2704, 0.3304] × [0.1771, 0.2447]

with the hyperplane defined by the equation

x1 − x2 − x3 + x4 = 0.2059 − 0.2828 − 0.3004 + 0.2109 = −0.1664

• Since d∞(µMT , νEC) = 0.0808, we have that midd∞(µ, ν) is the 3-dimensional
prism

[0.2021, 0.2097] × {0.2828} × [0.2900, 0.3108] × [0.2043, 0.2175].

Thus, if we are using the maximum distance to compare these vectors of
frequencies, then any vector of frequencies of nucleotides in the last prism (i.e.,
any vector lying in the intersection of this prism with the hyperplane x1 +x2 +
x3 + x4 = 1) can be understood as an average of the vectors corresponding to
M. tuberculosis and E. Coli, while, if we use the euclidean distance, then only
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the usual midpoint defined as half-the-sum of the vectors can be so. Finally,
the vectors of frequencies that could be understood as their average under the
Hamming distance would be those in the intersection of

[0.1693, 0.2425] × [0.2424, 0.3232] × [0.2704, 0.3304] × [0.1771, 0.2447]

with the plane of equations

x1 + x4 = 0.4168, x2 + x3 = 0.5832

obtained by combining the equation x1 − x2 − x3 + x4 = −0.1664 with x1 +
x2 + x3 + x4 = 1.

We shall also use segments in our work. For every µ, ν ∈ FP(X), the segment

defined by µ and ν with respect to a distance d on FP(X) is

segd(µ, ν) = {ξ ∈ FP(X) | d(µ, ξ) + d(ξ, ν) = d(µ, ν)}.

Notice that midd(µ, ν) ⊆ segd(µ, ν). More specifically, we have the following
easy result (see [16]).

Lemma 2. For every distance d on FP(X) and for every µ, ν ∈ FP(X),

midd(µ, ν) = {ξ ∈ segd(µ, ν) | d(ξ, µ) = d(ξ, ν)}.

The following segments are known:

• It is well known from euclidean geometry that, for every µ, ν ∈ FP(X),

segd2
(µ, ν) = {t · µ + (1 − t) · ν | t ∈ [0, 1]}.

• It is proved in [16] that, for every µ, ν ∈ FP(X),

segdH
(µ, ν) = {ξ | min{µi, νi} ≤ ξi ≤ max{µi, νi} for every i = 1, . . . , n}.

As far as segments with respect to d∞ go, we have the following result.

Proposition 3. Let µ, ν ∈ FP(X). Then, for every ξ ∈ FP(X), the following
conditions are equivalent:

(1) ξ ∈ segd∞
(µ, ν).

(2) ξ satisfies the following conditions for every index i0 ∈ {1, . . . , n} such that
d∞(µ, ν) = |µi0 − νi0|:

(i) min{µi0 , νi0} ≤ ξi0 ≤ max{µi0 , νi0}
(ii) d∞(µ, ξ) = |µi0 − ξi0 | and d∞(ν, ξ) = |νi0 − ξi0 |.
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(3) ξ satisfies conditions (i) and (ii) above for some index i0 ∈ {1, . . . , n} such
that d∞(µ, ν) = |µi0 − νi0|

Proof. To prove the implication (1)=⇒(2), let us assume that ξ ∈ segd∞
(µ, ν),

i.e., that
n
∨

i=1

|µi − ξi| +
n
∨

i=1

|νi − ξi| =
n
∨

i=1

|µi − νi|,

and let i0 ∈ {1, . . . , n} be any index such that d∞(µ, ν) = |µi0 − νi0 |. Then

|µi0 − νi0 | ≤ |µi0 − ξi0 | + |ξi0 − νi0 |

≤
∨n

i=1 |µi − ξi| +
∨n

i=1 |νi − ξi| =
∨n

i=1 |µi − νi| = |µi0 − νi0|,

which implies that

|µi0 − νi0| = |µi0 − ξi0 | + |ξi0 − νi0 |

and

|µi0 − ξi0 | + |ξi0 − νi0 | =
n
∨

i=1

|µi − ξi| +
n
∨

i=1

|νi − ξi|.

Now, the first equality is equivalent to

min{µi0 , νi0} ≤ ξi0 ≤ max{µi0 , νi0},

and, since

|µi0 − ξi0 | ≤
n
∨

i=1

|µi − ξi|, |ξi0 − νi0| ≤
n
∨

i=1

|νi − ξi|,

the second equality is equivalent to

n
∨

i=1

|µi − ξi| = |µi0 − ξi0 | and
n
∨

i=1

|νi − ξi| = |ξi0 − νi0|,

which completes the proof of this implication.

The implication (2)=⇒(3) is straightforward. Finally, as far as the implication
(3)=⇒(1) goes, simply notice that if i0 ∈ {1, . . . , n} is such that d∞(µ, ν) =
|µi0 − νi0| and ξ satisfies conditions (i) and (ii) for this index, then

d∞(µ, ξ) + d∞(ν, ξ) = |µi0 − ξi0 | + |νi0 − ξi0 | (by (ii))

= |µi0 − νi0| (by (i))

= d∞(µ, ν).
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3 Midpoints for aggregations of distances

Let
X = X1 t X2 t · · · t Xk

be a partition of the finite set X and, for every j = 1, . . . , k, let dj be a distance
on FP(Xj). For every µ ∈ FP(X), let µ(j) ∈ FP(Xj) denote henceforth the
restriction µ|Xj

.

Let Φ : (R+)k → [0, +∞] be a non-decreasing mapping such that:

(A1) Φ(0, . . . , 0) = 0.
(A2) Φ is subadditive: if ci ≤ ai + bi for every i = 1, . . . , k, then

Φ(c1, . . . , ck) ≤ Φ(a1, . . . , ak) + Φ(b1, . . . , bk).

(A3) Φ(c1, . . . , ck) = 0 implies c1 = · · · = ck = 0.

Then the mapping
d : FP(X) ×FP(X) → R

+

defined, for every µ, ν ∈ FP(X), by

d(µ, ν) = Φ(d1(µ
(1), ν(1)), . . . , dk(µ

(k), ν(k)))

is a distance on FP(X), called the aggregation of d1, . . . , dk through Φ and
which we shall denote from now on by Φ(d1, . . . , dk); see [2,20].

Let ω = (ω1, . . . , ωk) ∈ (R+)k be any vector of positive weights. It is easy to
check that conditions (A1) to (A3) above are satisfied, among others, by the
following three mappings:

Φ2,ω(c1, . . . , ck) =
√

∑k
i=1 ωic2

i , ΦH,ω(c1, . . . , ck) =
∑k

i=1 ωici,

Φ∞,ω(c1, . . . , ck) =
∨k

i=1 ωici.

We have now the following results on midpoints with respect to aggregations
of distances on parts of X through these three mappings.

Proposition 4. Let D be a distance on FP(X) of the form

Φ2,ω(d1, . . . , dk)

for some ω = (ω1, . . . , ωk) ∈ (R+)k and some distances dj on the subsets Xj

of X, j = 1, . . . , k. Then, for every µ, ν ∈ FP(X), the set midD(µ, ν) consists
of those fuzzy subsets ξ ∈ FP(X) such that ξ(j) ∈ middj

(µ(j), ν(j)) for every
j = 1, . . . , k.
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Proof. Let ξ ∈ midD(µ, ν). Then ξ ∈ segD(µ, ν), i.e.,

√

√

√

√

√

k
∑

j=1

ωjdj(µ(j), ξ(j))2 +

√

√

√

√

√

k
∑

j=1

ωjdj(ν(j), ξ(j))2 =

√

√

√

√

√

k
∑

j=1

ωjdj(µ(j), ν(j))2.

Since

dj(µ
(j), ν(j)) ≤ dj(µ

(j), ξ(j)) + dj(ν
(j), ξ(j)) for every j = 1, . . . , k,

arguing as in usual proof of the triangular inequality for the euclidean norm
and the characterization of the cases when it becomes an equality explained
in any first undergraduate linear algebra course (cf., for instance, [13, I, §4] or
[23, §7.1]), we obtain that

dj(µ
(j), ν(j)) = dj(µ

(j), ξ(j)) + dj(ν
(j), ξ(j)) for every j = 1, . . . , k,

and that if ξ 6= µ, ν, then there exists some t > 0 such that

dj(ν
(j), ξ(j)) = t · dj(µ

(j), ξ(j)) for every j = 1, . . . , k.

When we impose moreover that D(µ, ξ) = D(ν, ξ), i.e.,

√

√

√

√

√

k
∑

j=1

ωjdj(µ(j), ξ(j))2 =

√

√

√

√

√

k
∑

j=1

ωjdj(ν(j), ξ(j))2,

we obtain that either ξ = µ = ν or t = 1. In all, ξ satisfies that

dj(µ
(j), ν(j)) = dj(µ

(j), ξ(j)) + dj(ν
(j), ξ(j))

dj(ν
(j), ξ(j)) = dj(µ

(j), ξ(j))











for every j = 1, . . . , k,

i.e., that ξ(j) ∈ middj
(µ(j), ν(j)) for every j = 1, . . . , k. This proves the “only

if” implication. The “if” implication is straightforward.

Thus, roughly speaking, all midpoints of two fuzzy subsets µ and ν of X with
respect to a distance of the form Φ2,ω(d1, . . . , dk) are obtained by concatenat-
ing midpoints of the restrictions of µ and ν to each Xj with respect to the
corresponding distance dj.

Proposition 5. Let D be a distance on FP(X) of the form

ΦH,ω(d1, . . . , dk)

for some ω = (ω1, . . . , ωk) ∈ (R+)k and some distances dj on the subsets Xj

of X, j = 1, . . . , k. Then, for every µ, ν ∈ FP(X), the set midD(µ, ν) consists
of those fuzzy subsets ξ ∈ FP(X) that satisfy the following two conditions:

10



(i) ξ(j) ∈ segdj
(µ(j), ν(j)), for every j = 1, . . . , k.

(ii)
∑k

j=1 ωjdj(µ
(j), ξ(j)) =

∑k
j=1 ωjdj(ν

(j), ξ(j)).

Proof. By Lemma 2, we have that ξ ∈ midD(µ, ν) if and only if D(µ, ξ) +
D(ν, ξ) = D(µ, ν) and D(µ, ξ) = D(ν, ξ). This second condition is directly
equivalent to (ii). As far as the first condition goes, it says

k
∑

j=1

ωjdj(µ
(j), ξ(j)) +

k
∑

j=1

ωjdj(ν
(j), ξ(j)) =

k
∑

j=1

ωjdj(µ
(j), ν(j)).

Since

dj(µ
(j), ν(j)) ≤ dj(µ

(j), ξ(j)) + dj(ν
(j), ξ(j)) for every j = 1, . . . , k,

and ωj > 0 for every j, this equality is equivalent to

dj(µ
(j), ξ(j)) + dj(ν

(j), ξ(j)) = dj(µ
(j), ν(j)),

i.e., to ξ(j) ∈ segdj
(µ(j), ν(j)), for every j = 1, . . . , k.

Proposition 6. Let D be a distance on FP(X) of the form

Φ∞,ω(d1, . . . , dk)

for some ω = (ω1, . . . , ωk) ∈ (R+)k and some distances dj on the subsets Xj

of X, j = 1, . . . , k. Then, for every µ, ν ∈ FP(X), the set midD(µ, ν) consists
of those fuzzy subsets ξ ∈ FP(X) that satisfy the following condition: if
j0 ∈ {1, . . . , k} is such that

ωj0dj0(µ
(j0), ν(j0)) ≥ ωjdj(µ

(j), ν(j)) for every j = 1, . . . , k,

then

(i) ξ(j0) ∈ middj0
(µ(j0), ν(j0)).

(ii) ωjdj(µ
(j), ξ(j)) ≤ ωj0dj0(µ

(j0), ξ(j0)) and ωjdj(ν
(j), ξ(j)) ≤ ωj0dj0(ν

(j0), ξ(j0))
for every j = 1, . . . , k.

Proof. Assume that ξ ∈ FP(X) is such that

(*)
∨k

j=1 ωjdj(ξ
(j), µ(j)) =

∨k
j=1 ωjdj(ξ

(j), ν(j))

= 1
2

∨k
j=1 ωjdj(µ

(j), ν(j)) = 1
2
ωj0dj0(µ

(j0), ν(j0)).

In particular,

ωj0dj0(µ
(j0), ξ(j0)) ≤ 1

2
ωj0dj0(µ

(j0), ν(j0)),

ωj0dj0(ν
(j0), ξ(j0)) ≤ 1

2
ωj0dj0(µ

(j0), ν(j0)).
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Now,

ωj0dj0(µ
(j0), ν(j0)) ≤ ωj0dj0(µ

(j0), ξ(j0)) + ωj0dj0(ν
(j0), ξ(j0))

≤ 1
2
ωj0dj0(µ

(j0), ν(j0)) + 1
2
ωj0dj0(µ

(j0), ν(j0)) = ωj0dj0(µ
(j0), ν(j0))

and, since ωj0 > 0, this entails that

dj0(µ
(j0), ξ(j0)) = dj0(ν

(j0), ξ(j0)) =
1

2
dj0(µ

(j0), ν(j0)),

which is point (i) in the statement. Moreover, by (*), this implies that

ωj0dj0(µ
(j0), ξ(j0)) =

k
∨

j=1

ωjdj(ξ
(j), µ(j)), ωj0dj0(ν

(j0), ξ(j0)) =
k
∨

j=1

ωjdj(ξ
(j), ν(j)),

which is equivalent to point (ii).

This proves the “only if” implication. As far as the converse implication goes,
condition (ii) says that

D(µ, ξ) = ωj0dj0(µ
(j0), ξ(j0)) and D(ν, ξ) = ωj0dj0(ν

(j0), ξ(j0)),

and then condition (i) entails that

ωj0dj0(µ
(j0), ξ(j0)) = ωj0dj0(ν

(j0), ξ(j0)) =
1

2
ωj0dj0(µ

(j0), ν(j0)) = D(µ, ν).

Actually, the proof of the last proposition proves that if ξ ∈ midD(µ, ν), then
it satisfies conditions (i) and (ii) for every j0 such that ωj0dj0(µ

(j0), ν(j0)) =
D(µ, ν), while if ξ satisfies these conditions for some j0 such that D(µ, ν) =
ωj0dj0(µ

(j0), ν(j0)), then ξ ∈ midD(µ, ν).

If we take k = n, Xi = {xi}, ω = (1, . . . , 1) and the distances di defined
by the absolute value of the difference of the images, then these propositions
entail the descriptions of the sets of midpoints with respect to the euclidean,
Hamming and maximum distances recalled in Section 2. On the other hand,
taking k, each Xi and each di as before but now ω ∈ (R+)k arbitrary, we obtain
descriptions of the sets of midpoints with respect to the weighted euclidean,
Hamming and maximum distances: the weighted euclidean case is well-known
from elementary algebra (still half their sum), while the weighted Hamming
and maximum cases were already described in [3].
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4 Midpoints of fuzzy words

Let Σ be any alphabet. A fuzzy letter in Σ is a fuzzy subset of it, i.e. a
mapping µ : Σ → [0, 1]. If Σ has m elements, then, after fixing an ordering
of these elements, every fuzzy letter in it can be understood as a point in
the unit hypercube [0, 1]m: if Σ = {L1, . . . , Lm}, with the order given by the
subscripts, then we can identify a fuzzy letter µ : Σ → [0, 1] with the point

(µ(L1), . . . , µ(Lm)) ∈ [0, 1]m.

Now, a fuzzy word of length N over the alphabet Σ is an element of FP(Σ)N ,
i.e., a sequence µ = (µ(1), . . . , µ(N)) of fuzzy letters in Σ.

If we concatenate the fuzzy letters in Σ, or rather their representations as
vectors in [0, 1]m, of a fuzzy word of length N in the order as they appear
in it, we obtain a representation of this fuzzy word as an element of [0, 1]mN :
namely,

(µ(1)(L1), . . . , µ
(1)(Lm), µ(2)(L1), . . . , µ

(N)(Lm)).

A fuzzy word µ of length N can be identified with a fuzzy subset of an mN -
element set

X = {xi,j | i = 1, . . . , N, j = 1, . . . ,m},

which we shall still denote by µ: if µ = (µ(1), . . . , µ(N)), then we simply define

µ(xi,j) = µ(i)(Lj) for every i = 1, . . . , N and j = 1, . . . ,m. To simplify the

notations, we shall denote henceforth each µ(i)(Lj) by µ
(i)
j .

Special cases of fuzzy words have already made their appearance in compu-
tational biology. Profiles [4] and position specific scoring matrices [8] of en-
sembles of nucleic acid or protein sequences, based on a multiple alignment of
them, can be understood as fuzzy words over the corresponding alphabet of
monomers. More in general, Sadegh-Zadeh introduced in [21] the fuzzy words
over the alphabet Σ = {A,C,G, T} of nucleotides, and he called them fuzzy

genomes or also fuzzy polynucleotides, as a way to represent imprecisely known
DNA sequences beyond frequencies or probability distributions. In a similar
way, a fuzzy polypeptide can be defined as a fuzzy word over the 20-letter al-
phabet of amino acids. In general, we define a fuzzy biopolymer as a fuzzy word
over some biologically relevant alphabet of monomers: fuzzy polynucleotides
and fuzzy polypeptides are special cases of fuzzy biopolymers.

Torres and Nieto have shown in [22] the interest of the comparison of fuzzy
polynucleotides, and they used with this purpose a distance they introduced in
[17]. Since fuzzy words are defined by concatenating fuzzy letters, we consider
that to measure the dissimilarity of fuzzy words of a fixed length N over Σ it

13



makes sense to compute first the dissimilarity at the level of the fuzzy letters
in the same places in both words, and then to aggregate the values obtained
in this way: to sum them, to take their maximum, . . . . Metrics defined in a
similar way have already been used in profile alignment [10]. Thus, to compare
fuzzy words we can use distances obtained by aggregating, in the sense of
the previous section, distances on each fuzzy letter. We do it here for simple
metrics and simple aggregation mappings.

For every j = 1, . . . , N , let Xj = {xj,1, . . . , xj,m}, so that X = X1 t · · · t XN .
In the sequel we shall consider aggregations through Φ2,ω, ΦH,ω or Φ∞,ω of
euclidean, Hamming or maximum distances on these sets Xj. More specifically,
for every ω = (ω1, . . . , ωN) ∈ (R+)N and for every a, b ∈ {2, H,∞}, let Da,b,ω

denote the distance on X obtained by aggregating distances of type db on each
Xj through the mapping Φa,ω. For instance,

DH,∞,ω(µ, ν) =
∑N

j=1 ωj(
∨m

i=1 |µ
(j)
i − ν

(j)
i |)

D∞,H,ω(µ, ν) =
∨N

j=1 ωj(
∑m

i=1 |µ
(j)
i − ν

(j)
i |)

When ω = (1, . . . , 1), we shall simply write Da,b instead of Da,b,ω. Notice that
if a = b and ω = (1, . . . , 1), then Da,b is nothing but the metric da defined on
the whole X: for instance,

DH,H(µ, ν) =
N

∑

j=1

( m
∑

i=1

|µ
(j)
i − ν

(j)
i |

)

=
∑

j=1,...,N

i=1,...,m

|µ
(j)
i − ν

(j)
i |.

More in general, distances of the form Da,a,ω are simply weighted versions
of the distance da. Therefore, in the sequel we shall only consider the case
a 6= b. One could also consider aggregations of weighted euclidean, Hamming
or maximum distances on the sets Xj. For simplicity we do not consider this
case here, but it should be clear to the reader that the corresponding results
are straightforward generalizations of the results given below for aggregations
of non-weighted distances.

Now, as direct consequences of the propositions established in the last section
and the descriptions of segments and sets of midpoints provided in Section 2,
we obtain the following results. We begin with the distances of the form D2,b,ω,
for b = H,∞. In this case, and as we already pointed out after Proposition
4, the midpoints of two fuzzy words µ and ν of length N with respect to a
distance D2,b,ω are obtained by taking, for every j = 1, . . . , N , a midpoint of
the fuzzy letters µ(j) and ν(j) with respect to the corresponding distance db,
and then concatenating them in their order.

Corollary 7. For every µ, ν ∈ FP(Σ)N and for every j = 1, . . . , N , let

I
(j)
+ = {i | µ

(j)
i < ν

(j)
i }, I

(j)
− = {i | µ

(j)
i > ν

(j)
i }.
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Then, for every ξ ∈ FP(Σ)N , ξ ∈ midD2,H,ω
(µ, ν) if and only if it satisfies the

following two conditions:

(i) For every j = 1, . . . , N and i = 1, . . . ,m,

min{µ
(j)
i , ν

(j)
i } ≤ ξ

(j)
i ≤ max{µ

(j)
i , ν

(j)
i }.

(ii) For every j = 1, . . . , N ,

∑

i∈I
(j)
+

ξ
(j)
i −

∑

i∈I
(j)
−

ξ
(j)
i =

∑

i∈I
(j)
+

1

2
(µ

(j)
i + ν

(j)
i ) −

∑

i∈I
(j)
−

1

2
(µ

(j)
i + ν

(j)
i ).

Corollary 8. For every µ, ν, ξ ∈ FP(Σ)N , ξ ∈ midD2,∞,ω
(µ, ν) if and only

if it satisfies the following condition: for every j = 1, . . . , N and for every
i = 1, . . . ,m,

max{µ
(j)
i , ν

(j)
i } −

1

2
d∞(µ(j), ν(j)) ≤ ξ

(j)
i ≤ min{µ

(j)
i , ν

(j)
i } +

1

2
d∞(µ(j), ν(j)).

It is straightforward to check that midD2,b,ω
(µ, ν) ⊆ middb

(µ, ν), for b = H,∞.
These inclusions are, in general, strict if N ≥ 2, as the following simple exam-
ple shows.

Example 9. Let N = 2 and m = 1, so that we can identify every fuzzy word
µ of length 2 with the 2-dimensional vector (µ

(1)
1 , µ

(2)
1 ). Let µ = (1, 0.6) and

ν = (0, 0.4). Then

midD2,H
(µ, ν) = midD2,∞

(µ, ν) = {(0.5, 0.5)}

middH
(µ, ν) = {(s, t) ∈ [0, 1]2 | s + t = 1}

midd∞(µ, ν) = {0.5} × [0.1, 0.9]

As far as the midpoints with respect to distances of the form DH,b,ω go, for
b = 2,∞, we have the following two results.

Corollary 10. For every µ, ν, ξ ∈ FP(Σ)N , ξ ∈ midDH,2,ω
(µ, ν) if and only if

ξ(j) = tj · µ
(j) + (1 − tj) · ν

(j) for every j = 1, . . . , N,

15



for some (tj)j=1,...,N ∈ [0, 1]N such that

N
∑

j=1

(tj −
1

2
)ωjd2(µ

(j), ν(j)) = 0.

Proof. As a direct application of Proposition 5 and the description of segments
with respect of the euclidean distance given in Section 2, we obtain that ξ ∈
midDH,2,ω

(µ, ν) if and only if there exists, for every j = 1, . . . , N , some tj ∈

[0, 1] such that ξ(j) = tj · µ
(j) + (1 − tj) · ν

(j), and

(∗)
∑N

j=1 ωjd2(µ
(j), ξ(j)) =

∑N
j=1 ωjd2(ν

(j), ξ(j)).

Now, if ξ(j) = tj · µ
(j) + (1 − tj) · ν

(j), then d2(µ
(j), ξ(j)) = (1 − tj)d2(µ

(j), ν(j))
and d2(ν

(j), ξ(j)) = tjd2(µ
(j), ν(j)), and hence (*) is equivalent to the equality

∑N
j=1(tj −

1
2
)ωjd2(µ

(j), ν(j)) = 0 given in the statement.

Corollary 11. For every µ, ν ∈ FP(Σ)N and for every j = 1, . . . , N , let

`j ∈ {1, . . . ,m} be such that d∞(µ(j), ν(j)) = |µ
(j)
`j

− ν
(j)
`j
|, and let

J+ = {j | µ
(j)
`j

< ν
(j)
`j
}, J− = {j | µ

(j)
`j

> ν
(j)
`j
}.

Then, for every ξ ∈ FP(Σ)N , ξ ∈ midDH,∞,ω
(µ, ν) if and only if it satisfies the

following three conditions:

(i) min{µ
(j)
`j

, ν
(j)
`j
} ≤ ξ

(j)
`j

≤ max{µ
(j)
`j

, ν
(j)
`j
} for every j = 1, . . . , N .

(ii) For every j = 1, . . . , N and for every i = 1, . . . ,m,

|µ
(j)
i − ξ

(j)
i | ≤ |µ

(j)
`j

− ξ
(j)
`j
| and |ν

(j)
i − ξ

(j)
i | ≤ |ν

(j)
`j

− ξ
(j)
`j
|.

(iii)
∑

j∈J+
ωjξ

(j)
`j

−
∑

j∈J−

ωjξ
(j)
`j

=
∑

j∈J+

ωj

2
(µ

(j)
`j

+ ν
(j)
`j

) −
∑

j∈J−

ωj

2
(µ

(j)
`j

+ ν
(j)
`j

).

Proof. It is a direct application of Proposition 5, the description of segments
with respect to the maximum distance given in Proposition 3, and the fact
that, if (ξ

(1)
`1

, . . . , ξ
(N)
`N

) satisfies condition (i) in the statement, then

∑N
j=1 ωj|µ

(j)
`j

− ξ
(j)
`j
| −

∑N
j=1 ωj|ν

(j)
`j

− ξ
(j)
`j
|

= 2(
∑

j∈J+
ωjξ

(j)
`j

−
∑

j∈J−

ωjξ
(j)
`j

)

−(
∑

j∈J+
ωj(µ

(j)
`j

+ ν
(j)
`j

) −
∑

j∈J−

ωj(µ
(j)
`j

+ ν
(j)
`j

)).
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Finally, as far as the midpoints with respect to distances of the form D∞,b go,
for b = 2, H, the following two results are direct consequences of Proposition
6 and the descriptions of sets of midpoints in Section 2.

Corollary 12. For every µ, ν ∈ FP(Σ)N , let j0 ∈ {1, . . . , N} be such that

ωj0d2(µ
(j0), ν(j0)) ≥ ωjd2(µ

(j), ν(j)) for every j = 1, . . . , N.

Then, for every ξ ∈ FP(Σ)N , ξ ∈ midD∞,2,ω
(µ, ν) if and only if it satisfies the

following two conditions:

(i) ξ(j0) = (µ(j0) + ν(j0))/2.
(ii) For every j = 1, . . . , N ,

ωjd2(µ
(j), ξ(j)) ≤ ωj0d2(µ

(j0), ξ(j0)) and ωjd2(ν
(j), ξ(j)) ≤ ωj0d2(ν

(j0), ξ(j0)).

Corollary 13. For every µ, ν ∈ FP(Σ)N , let j0 ∈ {1, . . . , N} be such that

ωj0dH(µ(j0), ν(j0)) ≥ ωjdH(µ(j), ν(j)) for every j = 1, . . . , N,

and set

I
(j0)
+ = {i | µ

(j0)
i < ν

(j0)
i }, I

(j0)
− = {i | µ

(j0)
i > ν

(j0)
i }.

Then, for every ξ ∈ FP(Σ)N , ξ ∈ midD∞,H,ω
(µ, ν) if and only if it satisfies the

following three conditions:

(i) min{µ
(j0)
i , ν

(j0)
i } ≤ ξ

(j0)
i ≤ max{µ

(j0)
i , ν

(j0)
i } for every i = 1, . . . ,m.

(ii)
∑

i∈I
(j0)
+

ξ
(j0)
i −

∑

i∈I
(j0)
−

ξ
(j0)
i =

∑

i∈I
(j0)
+

1

2
(µ

(j0)
i + ν

(j0)
i ) −

∑

i∈I
(j0)
−

1

2
(µ

(j0)
i + ν

(j0)
i ).

(iii) For every j = 1, . . . , N ,

ωjdH(µ(j), ξ(j)) ≤ ωj0dH(µ(j0), ξ(j0)) and ωjdH(ν(j), ξ(j)) ≤ ωj0dH(ν(j0), ξ(j0)).

Let us finish the main body of this paper with some specific examples of
computations of midpoints of fuzzy biopolymers.

Example 14. Torres and Nieto computed in [22] the frequencies of the nucleo-
tides A, C, G and T at the three base sites of a codon in the coding section of
two bacteria, Mycobacterium tuberculosis H37Rv and Escherichia coli K-12.
In this way they associated to each organism a fuzzy word of length 3 over the
alphabet of nucleotides Σ = {A,C,G, T}. These words (presented as vectors
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in [0, 1]12 and approximated to only 4 digits for simplicity) are

µ
MT

= (0.1724, 0.3089, 0.3556, 0.1632, 0.1763, 0.3145, 0.3056, 0.2036,

0.1593, 0.3461, 0.3302, 0.1645)

µ
EC

= (0.2600, 0.2420, 0.3374, 0.1605, 0.2846, 0.2286, 0.1752, 0.3116,

0.1831, 0.2568, 0.2981, 0.2619)

What could be understood as an average of these descriptions? The answer
would depend on the metric used to compare fuzzy words of this kind: once
fixed a metric, we can compute the sets of midpoints of these two fuzzy polynu-
cleotides with respect to this metric and any fuzzy word in this set could be
considered as such an average within this range of approximation. If, more-
over, this vector is such that its entries 1 to 4 add up 1, as well as its entries 5
to 8 and 9 to 12, then it would also be a vector of frequencies of A, C, G and
T at the three base sites of a codon.

As a way of example, we shall only consider the distances DH,∞ (the sum of
maximum differences) and D∞,H (the maximum of the sums of differences),
in both cases, for simplicity, with vector of weights ω = (1, 1, 1), although, as
already Torres and Nieto mention in the Conclusions section of [22], it could
be interesting to introduce weights that represent the different roles played by
the first two positions in a codon and the last one [5].

• A simple computation gives that DH,∞(µ
MT

, µ
EC

) = 0.293 and, using Corol-
lary 11, that midDH,∞

(µ
MT

, µ
EC

) consists of those vectors (x1, . . . , x12) ∈
[0, 1]12 such that, on the one hand,

0.1724 ≤ x1 ≤ 0.26, 0.1752 ≤ x7 ≤ 0.3056, 0.1645 ≤ x12 ≤ 0.2619

x1 − x7 + x12 = 0.1465

and, on the other hand,

|0.3089 − x2| ≤ x1 − 0.1724 and |0.2420 − x2| ≤ 0.26 − x1

|0.3556 − x3| ≤ x1 − 0.1724 and |0.3374 − x3| ≤ 0.26 − x1

|0.1632 − x4| ≤ x1 − 0.1724 and |0.1605 − x4| ≤ 0.26 − x1

|0.1763 − x5| ≤ 0.3056 − x7 and |0.2846 − x5| ≤ x7 − 0.1752

|0.3145 − x6| ≤ 0.3056 − x7 and |0.2286 − x6| ≤ x7 − 0.1752

|0.2036 − x8| ≤ 0.3056 − x7 and |0.3116 − x8| ≤ x7 − 0.1752

|0.1593 − x9| ≤ x12 − 0.1645 and |0.1831 − x9| ≤ 0.2619 − x12
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|0.3461 − x10| ≤ x12 − 0.1645 and |0.2568 − x10| ≤ 0.2619 − x12

|0.3302 − x11| ≤ x12 − 0.1645 and |0.2981 − x11| ≤ 0.2619 − x12

For instance,

(0.1745, 0.3095, 0.3545, 0.1615, 0.2835, 0.2285, 0.1765, 0.3115,

0.1585, 0.3455, 0.3295, 0.1665)

satisfies these conditions and therefore it is a midpoint of µ
MT

and µ
EC

with
respect to DH,∞. Solving the corresponding linear system one founds that
this is the vector of frequencies of the bases A, C, G, and T at the three
base sites of a codon in, for instance, a 4000-codon long DNA sequence
containing 599 AAT codons, 99 ATA, 318 CCG, 67 CCT, 853 CTC, 418
GCC, 706 GGG, 294 GTG, 535 TAA, and 111 TCC. Such a DNA sequence
could be understood as a middle way between the original DNA sequences
as far as frequencies of bases in base sites of a codon concern.

Of course, any other combination of codons yielding this or another vector
of frequencies in midDH,∞

(µ
MT

, µ
EC

) could also be understood so.
• Another simple computation gives that D∞,H(µ

MT
, µ

EC
) = 0.4326 and, us-

ing Corollary 13, that midD∞,H
(µ

MT
, µ

EC
) consists of those vectors (x1, . . . ,

x12) ∈ [0, 1]12 such that, on the one hand,

0.1763 ≤ x5 ≤ 0.2846, 0.2286 ≤ x6 ≤ 0.3145

0.1752 ≤ x7 ≤ 0.3056, 0.2036 ≤ x8 ≤ 0.3116

x5 − x6 − x7 + x8 = −0.0239

and, on the other hand,

|0.1724 − x1| + |0.3089 − x2| + |0.3556 − x3| + |0.1632 − x4| ≤ 0.2163

|0.26 − x1| + |0.242 − x2| + |0.3374 − x3| + |0.1605 − x4| ≤ 0.2163

|0.1593 − x9| + |0.3461 − x10| + |0.3302 − x11| + |0.1645 − x12| ≤ 0.2163

|0.1831 − x9| + |0.2568 − x10| + |0.2981 − x11| + |0.2619 − x12| ≤ 0.2163

So, for instance,

(0.2106, 0.2816, 0.3467, 0.1611, 0.23415, 0.28645, 0.2255, 0.2539,

0.1656, 0.3205, 0.3176, 0.1963)

satisfies these conditions and therefore it is a midpoint of µ
MT

and µ
EC

with
respect to D∞,H .
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Example 15. Figure 1 displays the alignments, defined by their position in
the 3’-accept stem, of the first six bases of the tRNA-Met molecules of (a) ten
eubacterias and (b) the mitochondria of ten single cells or fungi.

(a) Mycoplasma Capric. GGCGGG (b) Chlamydomon Reinh. AGACAC

Mycoplasma Gen. GGAUCU Penicillium Urtic. AGCGAA

Mycoplasma Mycoid. GGCGGG Pichia Canad. CGCACU

Mycoplasma Pneumo. GGCUGG Aspergillus Nidul. GCCAAA

Spiroplasma Melif. GGCGGG Saccharomyces Cer. GCUUGU

Staphylococ. Aure. GGCGGU Williopsis Mrakii GCUUAU

Helicobacter Pylo. GGAUUC Hansenula Wingei CGCACU

Bacillus Subtilis GGACCU Torulopsis Glab. ACUUGU

E. Coli GGCUAC Pichia Jad. GCUUGU

Haemophilus Influ. CGCGGG Trichophyton Rubr. GCCCGA

Fig. 1. Two alignments of pieces of tRNA-Met.

The matrices of frequencies of the ribonucleotides A, C, G and U corresponding
to these two alignments are, respectively,

µ
Eub

=





















0 0 0.3 0 0.1 0

0.1 0 0.7 0.1 0.2 0.2

0.9 1 0 0.5 0.6 0.5

0 0 0 0.4 0.1 0.3





















µ
Mit

=





















0.3 0 0.1 0.3 0.4 0.3

0.2 0.6 0.5 0.2 0.2 0.1

0.5 0.4 0 0.1 0.4 0

0 0 0.4 0.4 0 0.6





















Concatenating the rows of these matrices we would obtain two fuzzy words of
length 6 over the alphabet Σ = {A,C,G, U}, which we would still denote by
µ

Eub
and µ

Mit
; for the sake of clarity we shall use their matrix representation.

The global alignment of both sets of sequences, preserving the nucleotides’
positions, has a matrix of frequencies that is exactly half the sum of this pair of
matrices, and therefore it represents a midpoint of µ

Eub
and µ

Mit
with respect

to all metrics considered here. Now the question arises: given an specific metric,
are there subalignments of this global alignment whose matrix of frequencies
is a midpoint of µ

Eub
and µ

Mit
with respect to this metric? Such a midpoint-

subalignment could represent a consensus or an average subalignment of the
global alignment.

Consider for instance the metric DH,∞. The subalignment given in Figure 2
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Mycoplasma Capric. GGCGGG

Mycoplasma Gen GGAUCU

Mycoplasma Pneumo. GGCUGG

Pichia Canad. CGCACU

Staphylococ. Aure. GGCGGU

E. Coli GGCUAC

Penicillium Urtic. AGCGAA

Saccharomyces Cer. GCUUGU

Williopsis Mrakii GCUUAU

Torulopsis Glab. ACUUGU

Fig. 2. A subalignment of the join of the previous two alignments

has matrix of frequencies





















0.2 0 0.2 0.1 0.3 0.1

0.1 0.2 0.6 0 0.2 0.2

0.7 0.8 0 0.3 0.4 0.2

0 0 0.2 0.6 0.1 0.5





















and it easy to check that the corresponding fuzzy word satisfies the equations
that describe midDH,∞

(µ
Eub

, µ
Mit

) given in Corollary 11 applied to µ
Eub

and
µ

Mit
. Furthermore, it is easy to deduce from these equations that no subalign-

ment with less than 10 sequences can have a matrix of frequencies that is a
midpoint of µ

Eub
and µ

Mit
with respect to DH,∞. Therefore, and as far as this

metric concerns, this subalignment is a minimal average of the pair of original
alignments.

We have used a toy alignment, with a small and easy to use number of se-
quences of small length, just to simplify the presentation of this example, but
the same problem can be attacked for alignments greater in size and in length.
We are currently working on it.

5 Conclusion

The concept of midpoint of two fuzzy subsets of a given finite set with respect
to a metric, as a formalization of the middle ways between the situations
described by the fuzzy subsets, was invented by Nieto and Torres in 2003, and
several applications to the comparison of medical data were soon proposed
[3,16]. The main goal of this paper is to introduce this concept in the field of
the comparison of biological sequences.

An imprecisely known biopolymer can be described as a fuzzy biopolymer,
a vector in a unit hypercube representing a fuzzy set that assigns to each
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position and each possible monomer (bases in nucleic acids, amino acids in
proteins) the extent to which this monomer appears in this position. This
kind of descriptions also include, for instance, profiles derived from multiple
alignments. But, although in our main examples we have only considered fuzzy
biopolymers that come from matrices of frequencies, and hence profiles, it
should be clear that the concept of fuzzy biopolymer is more general. For
instance, a fuzzy polymer could assign to each position and each monomer
the possibility that this monomer appears in this position, deduced from a
poorly designed sequencing experiment [2].

We have considered in this paper metrics on fuzzy biopolymers that are ob-
tained aggregating simple metrics (euclidean, Hamming, maximum distances)
defined on each piece of the fuzzy biopolymer that corresponds to a position.
For these metrics we have described the sets of midpoints of two fuzzy biopoly-
mers of the same length as sets of vectors in the unit hypercube of a suitable
dimension defined by an explicit set of equations and inequations.

Several possible applications of midpoints of fuzzy biopolymers have been
outlined in the introduction and we have given some examples at the end of the
last section. We hope other applications will arise. This will probably involve
the generalization of this work to other metrics used in profile alignment;
we hope to report on them elsewhere. To widen the range of application of
midpoints in computational biology as well as in other fields of research, it is
also necessary to overcome a major drawback. The very definition of midpoint
of two fuzzy subsets of a given set makes its generalization to fuzzy words
to make sense only for fuzzy words of the same length. One possibility to
overcome this drawback could be to develop a general theory of midpoints
of fuzzy subsets of different sets. Another possibility is to use a metric to
align the given fuzzy words, with suitable gap costs, and then to use the same
metric to compute the midpoints. This increases the interest of the study of
midpoints with respect of metrics used in profile alignment.

Acknowledgements. We acknowledge with thanks the comments and ad-
vices of the anonymous referees, J. Miró, and G. Valiente on the first version
of this paper, which have led to a great improvement of it.
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