ConcurrencySuite: Teaching concurrency and nondeterminism

with Spin

Mordechai (Moti) Ben-Ari
Department of Science Teaching
Weizmann Institute of Science
Rehovot 76100 Israel
moti.ben-ari@weizmann.ac.il

Abstract

The Spin model checker is an excellent system for
teaching concepts such as concurrency,
verification and nondeterminism. I will show
pedagogical tools that I have built based upon
Spin: the jSpin environment for developing and
verifying concurrent programs; SpinSpider, a tool
for generating graphical representations of state
diagrams of concurrent programs; VN, a tool for
“experiencing” the nondeterminism of finite
automata.

1. Introduction

Concurrency and nondeterminism are two of the
most challenging topics in computer science.
Concurrency is difficult because you cannot test a
concurrent program so formal verification
techniques are indispensable [2]. Nondeterminism
is difficult because it is unnatural to students who
have studied deterministic algorithms and
programming [1].

The classic way of teaching concurrency is
with a concurrency simulator [4]. While writing
the latest edition of my textbook [2], I found that
it is advantageous to use the Spin model checker
[5] as the primary teaching tool (although the
textbook demonstrates Spin only as one possible
system for implementating concurrency). To
facilitate learning this important software tool, I
have recently written an introductory textbook [3].
I have also developed a suite of Spin-based
pedagogical software tools.

2. Spin

Spin was developed by Gerard J. Holzmann for
verifying communications protocols; it earned him

the ACM Software System Award for 2001. I find
Spin attractive for teaching: although it is a
professional tool that is widely used in industry, it
is simple enough for undergraduate students to
use. Concurrent programs are written in a simple
C-like language called Promela, and simulation
and verification are carried out by Spin. Spin is a
command-line program that needs no installation
and is portable.

3. jSpin

Students expect to work with an integrated
development environment not a command-line
tool, so I developed jSpin as an IDE for Spin.
jSpin filters the scenario data that is generated by
Spin so that it can be flexibly displayed by the
student:

4. SpinSpider

The semantics of concurrent programs are defined
in terms of automata and can be displayed
graphically as state transition diagrams.
SpinSpider is a tool that uses data available from
Spin to construct the state transition diagram,
which is then written in the dot language and the

dot program of GraphViz is called to layout the
graph.

Here is the diagram generated automatically
by SpinSpider for the “third attempt” to solve the
critical section problem [2, Section 3.7]; the
potential for deadlock is instantly apparent in the
state near the bottom of the diagram, and the
reason for the deadlock is easy to explain using
the visualization:

4 wantP =1
1. wantQ =1
0o
4 wantP =1
12, lwantP
01
¥
4, wantP =1
13. wantQ =0
01
]
5. lwantQ
13. wantQ =0
1
¥
5. lwantQ
1. wantQ =1
10
g 1
6. wantP =0 5. lwantQ
11, wentQ = 1 12. InantP D
10 11
6. wantP =0
12, lwantP
11

5. VN: Visualization of Nondeterminism

Nondeterminism appears in several contexts
such as nondeterministic finite automata (NDFA)
and nondeterministic algorithms. Students find it
difficult to understand the definition of acceptance
of a string by an NDFA-the string is accepted iff
there exists an accepting computation; this
mathematical definition is at odds with the
intuition of a machine that searches for a solution,
for example, by backtracking.

Conferencia

The specification of VN was worked out in
collaboration with Michal Armoni. VN is a
software tool that leverages the nondeterministic
execution of a Promela program by Spin and the
graph layout capabilities of GraphViz to enable
the student “experience” the nondeterminism of
an NDFA. VN can run in three modes: (1) random
resolution of nondeterminism to emphasize that
the result of a single computation of an NDFA is
arbitrary; (2) interactive resolution of
nondeterminism which demonstrates that a “magic
coin” can guide the NDFA to an accepting
computation; (3) verification mode to find an
accepting computation if one exists,
demonstrating that an accepting computation can
be found by an exhaustive deterministic search.
VN can also find all accepting computations of all
inputs of a given length, and for deterministic
automata, it can compute the partition of the input
strings accepted at each node.

The input to VN is the description of an
NDFA created by JFLAP and a string entered by
the user. VN generates a Promela program which
is then executed by Spin in one of the above
modes. A dot file is generated and the dot
program of GraphViz is called to layout the graph.

Here is the visualization of an accepting
computation of an NDFA, where the path within
the NDFA is shown in bold in the left pane, while
the full path (including repetitions) is shown in the
right pane:

6. Resources

The software tools I developed can be
downloaded from:

XIV Jornadas de Ensefianza Universitaria de la Informatica

http://stwww.weizmann.ac.il/g-
cs/benari/home/software.html

or from:
http://sourceforge.net/projects/pcdp

The tools are written in Java and are available
under the GNU GPL. The other tools that are
needed (Spin, Graphviz, a C compiler, JFLAP)
can also be freely downloaded.

References

[I]M. Armoni and J. Gal-Ezer. Introducing
nondeterminism. J. of Computers in

Mathematics and Science Teaching,
25(4):325--359, 2006.

[2] M. Ben-Ari. Principles of Concurrent and
Distributed Programming (Second Edition).
Addison-Wesley, Harlow, UK, 2006.

[3] M. Ben-Ari. Principles of Spin. Springer,
London, 2008.

[4] B. Bynum and T. Camp. After you, Alfonse:
A mutual exclusion toolkit. SIGCSE Bulletin,
28(1):170--174, 1996.

[5]1 G. J. Holzmann. The Spin Model Checker:
Primer and Reference Manual. Addison-
Wesley, Boston, MA, 2004.

