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1. ABSTRACT 
Theory of Computation students frequently 
fail to appreciate the significance of the 
Church-Turing Thesis for one of two reasons. 
First, there is a tendency, on the part of 
students, to regard Church-Turing as 
tautologous and, consequently, devoid of 
important content. Second, there is a contrary 
impulse to view Church-Turing as 
unmotivated or even implausible. We describe 
our experience using simulation software in an 
effort to combat these two tendencies. 
1.1 Keywords 
Computability theory, Church-Turing Thesis, Turing 
machine, Markov algorithm, register machine, vector 
machine. 

2. INTRODUCTION 
We begin by recalling the usual formulation of the Church- 
Turing Thesis: 

Church-Turing Thesis. If (number-theoretic) functionfis 

is not effectively calculable. 

Properly understood, Church-Turing provides a concise 
summary of the classical Theory of Computation (see 
below). It constitutes a recurring theme in any good theory 
course. In addition, it provides an opportunity to relate 
Computer Science to the rest of the liberal arts curriculum 
(mathematics, the philosophy of mind, cognitive science, 
and even anthropology). 
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Finally, it is a landmark of twentieth-century intellectual 
life. If students leave a theory course with anything, they 
should leave with an appreciation of Church-Turing. WC 
believe that, often enough, this is not what happens. 

3. MATHEMATICS AND PHILOSOPHY 
Typically, if one’s goal is to introduce the Church-Turing 
Thesis within the classroom, one begins by reviewing the 
concept of an algorithm. It will be emphasised that the 
algorithm concept is inexact to the extent that the notions 
used to characterise it-“next step,” “carrying out,” 
“result,” and so forth-are being left rather vague. Students 
are asked to view the algorithm concept as part of the 
philosophy of mathematics. 
Next, the concept of an effectively calculable function or 
effectively computable function is introduced-any fimction 
f, partial or total, for which an algorithm exists. Due to the 
use of the algorithm concept in characterising an effectively 
calculable function, the latter concept is, of course, 
similarly philosophical. One stresses the importance of not 
confusing the philosophical concept of an effectively 
computable function with the mathematically rigorous 
concept of a Turing-computable function: they are two 
distinct concepts-one philosophical (but concerning 
mathematics), the other genuinely mathematical. 
. The philosophical notion of an effectively calculable 

function is one that underlies the culture of 
mathematics. It is part of every mathematician’s 
informal sense of the subject matter. 

. There is nothing informal about the concept of a 
Turing-computable function: a Turing-computable 
function is one computed by a single-tape Turing 
machine, where the latter is a quintuple of sets and 
functions satisfying certain conditions. 

This is not to say that the two concepts-one philosophical 
and one mathematical-are unrelated, however, and that is 
precisely what Church-Turing is all about. Our point is that 
the two terms “effectively calculable function” and “Turing- 
computable function” are not synonymous. 

4. EMPIRICAL JUSTIFICATION 
By virtue of the fact that Turing machines were intended as 
an analysis of the concept of computation, we take Turing 
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in 1936 to be claiming that (1) number-theoretic function f 
is effectively calculable if and only ~7 f is Turing- 
computable. Students are reminded that (1) is not itself a 
mathematical proposition, since it makes use of the inexact 
notion of effective calculability. Hence it would be 
misguided to try to prove (1). Rather, one seeks to provide 
justification for it. Of course, since (1) is a biconditional, it 
has two parts: (a) uf is effectively calculable, then f is 
Turing-computable (Church-Turing) and (b) rff is Turing- 
computable, then f is ejyectively calculable. 

As claims about computation, (la) and (lb) have different 
status. First, the student is encouraged to see that 
proposition (lb) is obvious. After all, if there is a Turing 
machine M that computes 1, then evidently f is associated 
with an algorithm, namely, the algorithm embodied in the 
state diagram of M. On the other hand, (la) is no1 obvious: 
might there not be some effectively calculable function f 
whose definition is so convoluted that no Turing machine 
could model the algorithm involved in computing this 
particularfl If so, (la) would be false. (The mere fact that 
this question even malkes sense means that Church-Turing 
is not obviously true.) Once it has been established that 
Church-Turing is not obvious, are there reasons to think 
that it might be true? Of course, the answer is yes, and now 
it is time to review a series of equivalence results. 

Assume that the first mathematical model of an 
effectively calculable function considered is the 
Turing machine model. An unaccountably infinite 
class of number-theoretic functions is seen to be 
partitioned into those that are Turing-computable and 
those that are not. 

Perhaps the partial recursive functions are introduced 
next. In that case, it is shown that the class of partial 
recursive functions is identical to the class of Turing- 
computable functions. 

If Markov algorithms are considered, it is shown that 
the class of Markov-computable functions is none 
other than the class of Turing-computable functions 
(see Examples 2 and 3 below). 

Analogous equivalence results relate Turing 
computability to register-machine computability, Post 
computability, &definability, and vector-machine 
computability. 

It is expected that students will be impressed by the facl that 
such apparently dissimilar proposals regarding 
computability should turn out, in the end, to capture the 
very same class of fun’ctions. 

What we call the A.rgument from the Convergen,ce of 
Dissimilar Ideas is introduced so as to establish the bearing 
of these equivalence results on the question of the truth of 
the Church-Turing Thesis. First, the fact that, for over 60 
years now, every attempt to characterise the concept of 

computability has netted the same class of functions 
suggests that this class of functions is a “natural” class- 
one such that the mathematical properties of its members 
make it the natural outcome of diverse analyses. The next 
step in the argument is to claim that this natural class can be 
none other than the class of effectively calculable functions. 
The empirical reasoning behind this second step is the 
following. We ask the question, If the class of Turing- 
computable functions were, in fact, a proper subset of the 
class of effectively calculable functions, might we not 
expect that one or more of the alternative characterisations 
of computability would turn out to encompass functions that 
are not Turing-computable? But the plain fact is that, after 
many years of alternative models, none has produced a 
single function that does not demonstrably fall under 
Turing’s model. This probably means that no such function 
exists. 

5. DECLINE OF THE COMPUTABILITY 
CONCEPT 
Some mention of arguments opposed to Church-Turing is 
always in order. But that is not our present focus. Rather, 
we wish to consider two obstacles to the instructor’s 
instilling a proper appreciation of Church-Turing and its 
importance for the Theory of Computation. 
Although no student ever objects to either (la) or (lb), we 
are convinced that many students do not understand either 
of them. And this is for one of two reasons. First, most 
students have no idea whatsoever of our intuitive concept of 
an effectively calculable function. Similarly, talk of our 
pretheoretic concept of computability is unlikely to have the 
intended effect. There is nothing unusual in this. It takes a 
long time to acquire a stance that is sufficiently objective- 
or sufficiently philosophical-to enable a student to 
distinguish analysandum from analysans. More likely than 
not, having just acquired the notion of a Turing-computable 
function, the student conflates that technical notion 
(analysans) with the philosophical concept of a computable 
function (analysandum).’ In any case, no student ever 
questions Church-Turing, and we suspect that this is 
because, from the student’s perspective, the two terms 
involved are synonymous anyway. One way to discourage 
this misconception is to address it directly by emphasising 
the distinction between an intuitive notion and the variety of 
technical concepts that have been introduced in order to 
characterise it. Since not much class time can be devoted to 
this issue, however, such direct efforts have, in the past, had 
but limited success. 

’ This tendency will be apparent to the extent that students USC the 
terms “computable” and “Turing-computable” interchangeably 
without citing the Church-Turing Thesis. The situation 
becomes truly hopeless if the students textbook appears to be 
doing the same thing. 
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As we approach the twenty-first  century, there is a second
reason why our students fail  to appreciate  the remarkable
claim embodied  in the Church-Turing Thesis: namely, our
students may well lack any robust, pretechnological  concept
of computation.  Increasingly,  computation  is held to be the
exclusive  domain of calculators  and digital computers.  This
may in turn mean that,  from our students’  point of view, the
concept  appearing in the antecedent  of (1 a) belongs not to
the philosophy  of mathematics,  as we have suggested, but,
rather, to computer  design theory.  (In that  case, the two
concepts  appearing in (la) would both be viewed as
technical  in character.)  Moreover,  no mere slide-show of
the history  of computing  (written records of manual
reckoning,  numerical tables  used in calculating,  historical
computing  devices,  an’d  so forth) is likely to reinstate  what
has been lost as the result of an omnipresent  technology.’
Perversely,  the solution that  we propose  involves
introducing  yet more technology.

Typically,  instructors  examine  at most one alternative  to
Turing’s model. It is then unsurprising that students  have
trouble distinguishing  an intuitive  notion of computability
from Turing computability:  Turing computability  is the
only (universal)  notion of computability  they have ever
contemplated. Our remedy is to give students a rapid
introduction  to a number of analyses of computability,
supported by software  simulations of the models involved.
In the past,  it has been impossible  to cover  several models
in a one-semester  course. But this is no longer true, given
the availability  of software  such as Deus ex machina
designed by Nicolae Savoiu  and available at
http://www.ics.uci.edu/-savoiu/dem.
Students eagerly invlestigate  alternatives  to the Turing
machine model using this software. We review several
examples below. (We highlight  the name of any icon found
in this software  and in [31.)

6. SOFTWARE !$IMULATIONS
6.1 Example 1
At icon LOGSPACE  we present  a three-tape,  off-line
Turing machine M for converting  the unary representation
1 n + ’ of natural number n to the corresponding  binary
representation Moreover,  M visits  only rlogz nl + 3

2 Perhaps some readers will feel that we are overplaying  this.  But
our experience has shown  that at least some students-perhaps
still a minority-have  /become dependent  upon  hand calculators
even  for very rudimentary  computational  tasks, e.g., integer
division  by 2. What does this portend for the viability  of a
widespread, transcendent  concept of effective calculability?
Even  those who would deny it any decisive  impact will surely
grant that this recent  historical  tendency can hardly strengthen
our students’ intuitive  understanding of the nature  of
computation. Most likely, that understanding is thereby
weakened. or so it seems to us.

squares  on its middle tape.  Accordingly,  this busy little
machine is seen to compute  in logarithmic  space.

6.2 Example 2
The four-tape  Turing machine A4 at
icon Example 4.5.1  implements the 1*1-+  *

Markov algorithm schema whose *-+&
seven productions  are displayed  in @III + @
Figure 1. Moreover,  M is the result of
applying a completely general 6211 + .I11

construction.  It is thereby  shown that @l + .ll
any Markov-computable  function is
Turing computable.

@ --+.I

E-3@
6.3 Example 3
It is possible  to describe  a construction
showing that  the computational Figure  1

behaviour  of any Turing machine can
be simulated by some Markov  algorithm. Applied  to a
deterministic  Turing machine M computing  k-ary function5
said construction  yields a Markov  algorithm schema S that
computesf. As an illustration,  we apply the construction  to
a certain 13-state  Turing  machine M computing  unary
functionf(n) = 2n (see Example 1.5.3  in the Turing folder).
The result is the algorithm schema S found at icon Example
4.5.2 within the Markov  folder (see Figure  2). Since M
computesfln) = 2% so does S.

Figure  2

6.4 Example 4
In Figure  3 we present  a snapshot of a register  machine, in
the sense of [2],  that computes  Ackermann’s  function.
(Recall that  the theoretical  importance  of Ackermann’s
function resides in the fact that  it is a binary  recursive
function that  is not primitive  recursive.)
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Figure 3

6.5 Example 5
The Vector  Machine  folder implements a theoretical  model
of parallel  computation  found in [l]. Figure 4 presents the
flowchart of a vector  machine thal computes multiplication
functionAn,  m) = n.m (see Multiplication Machine).

It is our experience  that,  having been presented  with several
diverse  technical  analyses, the student is less  likely to
identify  the intuitive  notion of computability  outright with
any one of them. After all, to do so now would  mean
making an arbitrary  choice. Consequently,  the Church-
Turing Thesis is less  likely to be seen as devoid  of content,
or such is our hope.

Figure 4

Finally, for some students, there is a second problem  with
respect  to Church-Turing. Namely, once the student is
convinced  that Church-Turing really  says  something, there
is the question of its truth.  The plausibility  of Church-
Turing is illustrated, most convincingly,  by our last
example.

6.6 Example 6
We present  a five-tape  Turing  machine (C Interpreter)  that
compiles and runs programs  written in a small  (but
growing) subset of C, as described  in the software
documentation  (see Figure 5).

Figure 5
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