
Motivating the Church-Turing Thesis in the Twenty-First
Century

R. Gregory Taylor
Jersey City State College

Jersey City, New Jersey 07305

taylor@ jcsl .jcstate.edu

1. ABSTRACT
Theory of Computation students frequently
fail to appreciate the significance of the
Church-Turing Thesis for one of two reasons.
First, there is a tendency, on the part of
students, to regard Church-Turing as
tautologous and, consequently, devoid of
important content. Second, there is a contrary
impulse to view Church-Turing as
unmotivated or even implausible. We describe
our experience using simulation software in an
effort to combat these two tendencies.
1.1 Keywords
Computability theory, Church-Turing Thesis, Turing
machine, Markov algorithm, register machine, vector
machine.

2. INTRODUCTION
We begin by recalling the usual formulation of the Church-
Turing Thesis:

Church-Turing Thesis. If (number-theoretic) functionfis

is not effectively calculable.

Properly understood, Church-Turing provides a concise
summary of the classical Theory of Computation (see
below). It constitutes a recurring theme in any good theory
course. In addition, it provides an opportunity to relate
Computer Science to the rest of the liberal arts curriculum
(mathematics, the philosophy of mind, cognitive science,
and even anthropology).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
coptes are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

ITiCSE ‘98 Dublin, Ireland

0 1998 ACM l-581 13-ooo-7/98/0008... $5.00

Finally, it is a landmark of twentieth-century intellectual
life. If students leave a theory course with anything, they
should leave with an appreciation of Church-Turing. WC
believe that, often enough, this is not what happens.

3. MATHEMATICS AND PHILOSOPHY
Typically, if one’s goal is to introduce the Church-Turing
Thesis within the classroom, one begins by reviewing the
concept of an algorithm. It will be emphasised that the
algorithm concept is inexact to the extent that the notions
used to characterise it-“next step,” “carrying out,”
“result,” and so forth-are being left rather vague. Students
are asked to view the algorithm concept as part of the
philosophy of mathematics.
Next, the concept of an effectively calculable function or
effectively computable function is introduced-any fimction
f, partial or total, for which an algorithm exists. Due to the
use of the algorithm concept in characterising an effectively
calculable function, the latter concept is, of course,
similarly philosophical. One stresses the importance of not
confusing the philosophical concept of an effectively
computable function with the mathematically rigorous
concept of a Turing-computable function: they are two
distinct concepts-one philosophical (but concerning
mathematics), the other genuinely mathematical.
. The philosophical notion of an effectively calculable

function is one that underlies the culture of
mathematics. It is part of every mathematician’s
informal sense of the subject matter.

. There is nothing informal about the concept of a
Turing-computable function: a Turing-computable
function is one computed by a single-tape Turing
machine, where the latter is a quintuple of sets and
functions satisfying certain conditions.

This is not to say that the two concepts-one philosophical
and one mathematical-are unrelated, however, and that is
precisely what Church-Turing is all about. Our point is that
the two terms “effectively calculable function” and “Turing-
computable function” are not synonymous.

4. EMPIRICAL JUSTIFICATION
By virtue of the fact that Turing machines were intended as
an analysis of the concept of computation, we take Turing

228

in 1936 to be claiming that (1) number-theoretic function f
is effectively calculable if and only ~7 f is Turing-
computable. Students are reminded that (1) is not itself a
mathematical proposition, since it makes use of the inexact
notion of effective calculability. Hence it would be
misguided to try to prove (1). Rather, one seeks to provide
justification for it. Of course, since (1) is a biconditional, it
has two parts: (a) uf is effectively calculable, then f is
Turing-computable (Church-Turing) and (b) rff is Turing-
computable, then f is ejyectively calculable.

As claims about computation, (la) and (lb) have different
status. First, the student is encouraged to see that
proposition (lb) is obvious. After all, if there is a Turing
machine M that computes 1, then evidently f is associated
with an algorithm, namely, the algorithm embodied in the
state diagram of M. On the other hand, (la) is no1 obvious:
might there not be some effectively calculable function f
whose definition is so convoluted that no Turing machine
could model the algorithm involved in computing this
particularfl If so, (la) would be false. (The mere fact that
this question even malkes sense means that Church-Turing
is not obviously true.) Once it has been established that
Church-Turing is not obvious, are there reasons to think
that it might be true? Of course, the answer is yes, and now
it is time to review a series of equivalence results.

Assume that the first mathematical model of an
effectively calculable function considered is the
Turing machine model. An unaccountably infinite
class of number-theoretic functions is seen to be
partitioned into those that are Turing-computable and
those that are not.

Perhaps the partial recursive functions are introduced
next. In that case, it is shown that the class of partial
recursive functions is identical to the class of Turing-
computable functions.

If Markov algorithms are considered, it is shown that
the class of Markov-computable functions is none
other than the class of Turing-computable functions
(see Examples 2 and 3 below).

Analogous equivalence results relate Turing
computability to register-machine computability, Post
computability, &definability, and vector-machine
computability.

It is expected that students will be impressed by the facl that
such apparently dissimilar proposals regarding
computability should turn out, in the end, to capture the
very same class of fun’ctions.

What we call the A.rgument from the Convergen,ce of
Dissimilar Ideas is introduced so as to establish the bearing
of these equivalence results on the question of the truth of
the Church-Turing Thesis. First, the fact that, for over 60
years now, every attempt to characterise the concept of

computability has netted the same class of functions
suggests that this class of functions is a “natural” class-
one such that the mathematical properties of its members
make it the natural outcome of diverse analyses. The next
step in the argument is to claim that this natural class can be
none other than the class of effectively calculable functions.
The empirical reasoning behind this second step is the
following. We ask the question, If the class of Turing-
computable functions were, in fact, a proper subset of the
class of effectively calculable functions, might we not
expect that one or more of the alternative characterisations
of computability would turn out to encompass functions that
are not Turing-computable? But the plain fact is that, after
many years of alternative models, none has produced a
single function that does not demonstrably fall under
Turing’s model. This probably means that no such function
exists.

5. DECLINE OF THE COMPUTABILITY
CONCEPT
Some mention of arguments opposed to Church-Turing is
always in order. But that is not our present focus. Rather,
we wish to consider two obstacles to the instructor’s
instilling a proper appreciation of Church-Turing and its
importance for the Theory of Computation.
Although no student ever objects to either (la) or (lb), we
are convinced that many students do not understand either
of them. And this is for one of two reasons. First, most
students have no idea whatsoever of our intuitive concept of
an effectively calculable function. Similarly, talk of our
pretheoretic concept of computability is unlikely to have the
intended effect. There is nothing unusual in this. It takes a
long time to acquire a stance that is sufficiently objective-
or sufficiently philosophical-to enable a student to
distinguish analysandum from analysans. More likely than
not, having just acquired the notion of a Turing-computable
function, the student conflates that technical notion
(analysans) with the philosophical concept of a computable
function (analysandum).’ In any case, no student ever
questions Church-Turing, and we suspect that this is
because, from the student’s perspective, the two terms
involved are synonymous anyway. One way to discourage
this misconception is to address it directly by emphasising
the distinction between an intuitive notion and the variety of
technical concepts that have been introduced in order to
characterise it. Since not much class time can be devoted to
this issue, however, such direct efforts have, in the past, had
but limited success.

’ This tendency will be apparent to the extent that students USC the
terms “computable” and “Turing-computable” interchangeably
without citing the Church-Turing Thesis. The situation
becomes truly hopeless if the students textbook appears to be
doing the same thing.

229

As we approach the twenty-first century, there is a second
reason why our students fail to appreciate the remarkable
claim embodied in the Church-Turing Thesis: namely, our
students may well lack any robust, pretechnological concept
of computation. Increasingly, computation is held to be the
exclusive domain of calculators and digital computers. This
may in turn mean that, from our students’ point of view, the
concept appearing in the antecedent of (1 a) belongs not to
the philosophy of mathematics, as we have suggested, but,
rather, to computer design theory. (In that case, the two
concepts appearing in (la) would both be viewed as
technical in character.) Moreover, no mere slide-show of
the history of computing (written records of manual
reckoning, numerical tables used in calculating, historical
computing devices, an’d so forth) is likely to reinstate what
has been lost as the result of an omnipresent technology.’
Perversely, the solution that we propose involves
introducing yet more technology.

Typically, instructors examine at most one alternative to
Turing’s model. It is then unsurprising that students have
trouble distinguishing an intuitive notion of computability
from Turing computability: Turing computability is the
only (universal) notion of computability they have ever
contemplated. Our remedy is to give students a rapid
introduction to a number of analyses of computability,
supported by software simulations of the models involved.
In the past, it has been impossible to cover several models
in a one-semester course. But this is no longer true, given
the availability of software such as Deus ex machina
designed by Nicolae Savoiu and available at
http://www.ics.uci.edu/-savoiu/dem.
Students eagerly invlestigate alternatives to the Turing
machine model using this software. We review several
examples below. (We highlight the name of any icon found
in this software and in [31.)

6. SOFTWARE !$IMULATIONS
6.1 Example 1
At icon LOGSPACE we present a three-tape, off-line
Turing machine M for converting the unary representation
1 n + ’ of natural number n to the corresponding binary
representation Moreover, M visits only rlogz nl + 3

2 Perhaps some readers will feel that we are overplaying this. But
our experience has shown that at least some students-perhaps
still a minority-have /become dependent upon hand calculators
even for very rudimentary computational tasks, e.g., integer
division by 2. What does this portend for the viability of a
widespread, transcendent concept of effective calculability?
Even those who would deny it any decisive impact will surely
grant that this recent historical tendency can hardly strengthen
our students’ intuitive understanding of the nature of
computation. Most likely, that understanding is thereby
weakened. or so it seems to us.

squares on its middle tape. Accordingly, this busy little
machine is seen to compute in logarithmic space.

6.2 Example 2
The four-tape Turing machine A4 at
icon Example 4.5.1 implements the 1*1-+ *

Markov algorithm schema whose *-+&
seven productions are displayed in @III + @
Figure 1. Moreover, M is the result of
applying a completely general 6211 + .I11

construction. It is thereby shown that @l + .ll
any Markov-computable function is
Turing computable.

@ --+.I

E-3@
6.3 Example 3
It is possible to describe a construction
showing that the computational Figure 1

behaviour of any Turing machine can
be simulated by some Markov algorithm. Applied to a
deterministic Turing machine M computing k-ary function5
said construction yields a Markov algorithm schema S that
computesf. As an illustration, we apply the construction to
a certain 13-state Turing machine M computing unary
functionf(n) = 2n (see Example 1.5.3 in the Turing folder).
The result is the algorithm schema S found at icon Example
4.5.2 within the Markov folder (see Figure 2). Since M
computesfln) = 2% so does S.

Figure 2

6.4 Example 4
In Figure 3 we present a snapshot of a register machine, in
the sense of [2], that computes Ackermann’s function.
(Recall that the theoretical importance of Ackermann’s
function resides in the fact that it is a binary recursive
function that is not primitive recursive.)

230

Figure 3

6.5 Example 5
The Vector Machine folder implements a theoretical model
of parallel computation found in [l]. Figure 4 presents the
flowchart of a vector machine thal computes multiplication
functionAn, m) = n.m (see Multiplication Machine).

It is our experience that, having been presented with several
diverse technical analyses, the student is less likely to
identify the intuitive notion of computability outright with
any one of them. After all, to do so now would mean
making an arbitrary choice. Consequently, the Church-
Turing Thesis is less likely to be seen as devoid of content,
or such is our hope.

Figure 4

Finally, for some students, there is a second problem with
respect to Church-Turing. Namely, once the student is
convinced that Church-Turing really says something, there
is the question of its truth. The plausibility of Church-
Turing is illustrated, most convincingly, by our last
example.

6.6 Example 6
We present a five-tape Turing machine (C Interpreter) that
compiles and runs programs written in a small (but
growing) subset of C, as described in the software
documentation (see Figure 5).

Figure 5

7. ACKNOWLEDGMENTS
We wish to thank Nicolae Savoiu for developing the
software in which our examples have been created and Jane
Stanton for editorial assistance.

8.
[II

El

[31

REFERENCES
Pratt, Vaughn R., and Stockmeyer, Larry J. A
Characterisation of the Power of Vector Machines.
Journal of Computer and System Sciences 12 (1976)
198-221.

Shepherdson, J. C., and Sturgis, H. E. Computability
of Recursive Functions. Journal of the Association of
Computing Machinery 10 (1963) 217-255.
Taylor, R. Gregory. Models of Computation and
Formal Languages. Oxford University Press, New
York, 1998.

231

