
Experience with a Computer-Assisted Formal
Programming Examination

John English
School of Computing and Mathematical Sciences

University of Brighton,
Brighton BN2 4GJ, UK

(+44) 1273 642672

je@brighton.ac.uk

ABSTRACT
This paper describes a web-based system for the online delivery of
formal examinations and their automated marking. This system
was first used in June 2001 in an end-of-year exam for a first year
undergraduate programming course. The outcome of this
experiment is also described.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer uses in education
– computer-managed instruction.

General Terms
Management, Measurement, Experimentation, Human Factors.

Keywords
Automated assessment, formal examination, programming.

1. INTRODUCTION
In common with many other institutions, the University of
Brighton has experienced a sharp growth in student numbers in
recent years. Increased numbers make it more difficult to assess
student attainment; if assessments are graded manually, staff must
either set fewer assessment tasks or resign themselves to a greatly
increased marking load. There are also problems with plagiarism
[7]. The University of Brighton has, like many other institutions,
been experimenting with a variety of online assessment
techniques to alleviate these problems [2,3].

One of the difficulties with teaching programming is finding ways
to assess students which assesses practical skills but which also
prevents plagiarism. One approach which has proved suitable in
other modules is to set individual pieces of work; for example, the
author has used this approach with great success on a computer
architecture module and an introductory compiler construction
module, where the basic problem is the same but the particular
data given to each student is randomly generated on an individual

basis. However, it is much more difficult to parameterise
programming problems in this way. If the basic problem is the
same, the solution is essentially the same, with only minor
changes being required to accommodate an individual set of data.

The traditional approach to avoid the potential for plagiarism is to
use a formal examination, but it is unfair to expect students to
produce working programs in a traditional written examination. A
solution which has been used by several others [1,5,6] is to
conduct a formal computer-based examination which allows
students access to compilers and other tools so that they can
develop and test practical solutions to the questions they have
been set. This also has the additional advantage that the
submissions will be available in a machine-readable format which
is amenable to some form of automated marking system.

This paper describes an online programming examination which
was taken in summer 2001 by a cohort of 64 students. The exam
paper and submission system were web-based using an HTML
form, and the marking workload was drastically reduced by using
a semi-automated marking system similar to that described by
Jackson [4] consisting of an automated marking phase followed
by a much faster human moderation of the automatically-
generated marks.

2. IMPLEMENTATION
The exam was implemented using a system devised by the author.
This consists of a CGI script which generates an HTML form
from an XML representation of an exam paper, based loosely on
the IMS Question and Test specification [8]. Questions of several
different types are supported:

• Free text;

• Multiple choice (choose one right answer out of a set of
possibilities);

• Mutiple select (choose all right answers out of a set of
possibilities); and

• Multiple match (arrange a set of answers into the correct
order).

The order of questions within a section can be randomised, as
well as the set of answers for a particular question where there is
one. Randomly-chosen values from a specified set can also be
used to individualise particular questions if desired.

The HTML form generated by this system includes an applet
which transmits the contents of the form to a special-purpose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
ITiCSE’02, June 24-26, 2002, Aarhus, Denmark.
Copyright 2002 ACM 1-58113-499-1/02/0006…$5.00.

51

server application every 30 seconds. This information includes the
username, the student’s registration number, and the seed value
used by the random number generator to construct the exam
paper. The server simply stores this data using the username and
the current time to generate a unique filename. This guards
against potential system crashes, since the last set of data could be
used to restore the exam paper for each student to the state it was
in within 30 seconds of the crash.

The server application is controlled by a configuration file which
specifies the server port number, the name of the XML exam
paper, the time allowed, and specific time extensions granted to
students with special needs (e.g. dyslexia). For health and safety
reasons, it was also a requirement to allow students to take a break
from using the computer, so a separate allowance is also included
for the permitted break time (and extra break time for individual
students where necessary).

The generated HTML exam form also includes JavaScript to
obtain the time remaining and the remaining permitted break time
from the applet and display it in the browser’s status bar. To deal
with permitted break time, the applet fetches the time remaining
and permitted break time when it is first loaded (from its init()
method) and its destroy() method notifies the server when it is
terminated. The server logs these events for each user and uses
them to calculate the remaining time whenever the applet is
reloaded.

To take a break, a student merely needs to shut down the browser
(thereby killing the applet). The server deducts the time between
the applet shutting down and restarting from the permitted break
time, or if the break time has been exhausted, from the time limit
for the exam. When the time limit for the exam expires, no further
submissions are allowed; the server stops recording the content of
the user’s exam form, while at the same time JavaScript in the
exam form displays an alert box to notify the student that the
exam is over.

3. THE EXAM
The examination described here was an open-book exam
conducted in our computer laboratory for a first year
undergraduate programming module using Ada 95. It lasted a
total of three hours: 2.5 hours online, with a total of 30 minutes
permitted break time.

The exam consisted of three sections. Section A contained ten
multiple-choice questions worth a total of 30%; section B
contained five short free-text practical questions worth a total of
30%; and section C contained two longer free-text practical
questions worth 20% each. One of the section C questions was a
program with a mixture of syntax and logic errors to be fixed, the
other was a package specification which contained the declaration
of two functions, for which the corresponding package body
needed to be implemented. Examples of questions from each
section are shown in Figure 1 above.

To prevent online collusion, the machines that the students were
using were logged in to specially-created accounts with no
external Internet access, no email account, and no printing
facilities. The exam paper was loaded from an authenticating
server using Internet Explorer, which remembers passwords for
authenticating sites and uses these to log in automatically. This
meant that students did not need to know the password for the

accounts they were using, so it would not be possible to log into
the account from elsewhere.

The copies of Internet Explorer were initially set up to point to a
form giving the exam rubric and guidance information. The
students entered their registration number on this form, in the
same way as they would enter their registration number on the
answer book for a standard written examination. They also had to
fill in the standard paper examination slip giving the exam code,
their name and registration number and the desk number (in this
case the username that the machine had been logged in under).
The administrative requirements were therefore exactly parallel to
those for a conventional written exam.

When the students pressed the button to start the exam, the CGI
script described above recorded a log entry for the start of the
exam and generated an individualised copy of the exam paper.

4. MARKING
After the end of the examination, a marking script was run which
regenerated the questions given to each student and marked the
submitted answers. The system can mark all types of questions
except free-text questions with perfect accuracy, but free-text

Section A:

Which of the following Boolean expressions is true if the
value of the integer variable A is between 1 and 10 inclusive?

• not (A < 1 or A > 10)

• not (A < 1 and A > 10)

• A > 1 and A < 10

• A > 1 or A < 10

Section B:

Write a loop statement which will scan a string variable called
S and put the total number of upper-case vowels (A, E, I, O or
U) in a variable called V. Your solution should work for any
string, no matter what its length or bounds.

Section C:

The program below (not shown) is intended to read in an
array of numbers (terminated by anything which is not a valid
number), sort them into ascending order and print them out.
For example, if the input is:

 5 8 3 4 7 #

the output should be

 3 4 5 7 8

In its present state, the program does not compile.

You are required to:

• correct the errors so that the program compiles
successfully.

• correct the code so that it generates the correct output.

Figure 1: Sample questions

52

questions are more problematical. In the XML form of the exam
paper, a free-text question specifies the name of a command to be
executed to process a submission. In this particular case, the
command would embed the submission into a test program and
attempt to compile it. If this was successful, it would run the
result several times against supplied sets of test data, using a
sandbox to guard against infinite loops, excessive amounts of
output and a variety of other possible problems.

The output in each case would be compared against a set of
expected results (generated by running a model solution against
the test sets). Additional marks might be awarded for particular
types of solution, so additional checks were made for significant
coding constructions in the submission. For example, consider
this Section B question:

Given a time as the number of seconds since midnight in an
integer variable called Seconds, write a sequence of Ada
statements which will store the time as a number of hours,
minutes and seconds in three variables called H, M and S
respectively.

A bonus mark was awarded if a division operator was used, and
another if a remainder operator was used (mod or rem in Ada).
The lack of a division operator was taken to imply that a relatively
inefficient subtraction loop had been used, and similarly the use
of a remainder operator was taken to indicate an efficient solution.
A mark was then awarded for each set of test data handled
correctly for a total of six marks altogether.

If a submission failed to compile, or if none of the test cases
produced the correct output, the submission was flagged for
manual checking. Correctly processing any of the sets of test data
was taken to indicate a partially correct solution which had met
some of the required criteria but had failed on the others, and the
marks could therefore be assumed to be accurate.

The moderation process involved printing out a complete set of
submissions and a breakdown of the automatically-generated
marks, and leafing through this looking for messages requesting a
manual check. Most submissions required at least one such check,
but the time taken to moderate 64 scripts was about two hours,
which is estimated to be at least five times faster than the time it
would have taken to mark the entire set of submissions by hand.
Because this was the first time this system had been used, all
questions and their marks were checked during moderation, so the
time saving noted here is in fact a very conservative one.

5. RESULTS
The exam was undertaken by a cohort of 64 students in June
2001. The students could use textbooks and course notes during
the exam, as well as locally-available online material and
development tools. They were also allowed to leave the laboratory
at any time, although they were not permitted to take out or bring
in any written notes once the exam had begun.

The results of the exam are summarised in the chart given as
figure 2, which shows the spread of marks before and after the
moderation process. Moderation added an average of 8% to the
marks for each submission, raising the average mark from 41% to
49%. The frequency of changes in marks (ranging from 0 to 20%)
is shown in figure 3.

The bulk of the problems arose from students not following the
instructions in the question sufficiently closely. Common mistakes
included:

• inventing (but not declaring) unnecessary variables to hold
temporary results;

• attempt to input values into the variables named in the
question when not requested to do so;

• producing output when not requested to;

• using different variable names to those in the question.

These errors would result in compilation errors or in no correctly
processed test sets. Manual moderation was concerned with
factoring out mistakes like these and adding marks that would
otherwise have been recorded, while levying an appropriate
penalty for the error.

The availability of development tools made it possible for
students to test directly whether the answer to a particular
question was correct. For example, the answer to the sample
Section A question shown in figure 1 could be determined by
trying each answer in turn in a simple test program. However,
there is inevitably a time penalty for creating such a test program
compared to being able to spot the correct answer without the
need for external confirmation. In addition, constructing a suitable
test program is in itself a good measure of practical programming
ability. The fact that students could empirically test their solutions
was in important part of the rationale for this exam, and the use of
empirical testing even for multiple-choice questions in no way

0

5

10

15

20

25

 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100

Before moderation
After moderation

Figure 2: Marks before and after moderation

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3: Number of marks added during moderation

53

invalidates this exam as a way of assessing practical programming
ability.

Plagiarism was still possible during breaks. Breaks could have
been supervised to prevent this, but since the questions were
randomised, it was felt that this would hamper students
sufficiently from communicating solutions to specific questions.
The restriction on bringing in written notes after the start of the
exam was felt to be an adequate precaution against plagiarism,
and the results seem to bear this out. However, further analysis is
planned to determine who took breaks together and whether
subsequent submissions show evidence of collusion before the
exam is run again in 2002.

6. CONCLUSIONS
This system has only been used once so far, but it has proved to
be an extremely successful experiment. In the author’s opinion,
this examination gave a much more accurate picture of individual
practical programming ability within the cohort than other forms
of assessment that have been tried in previous years. It also
greatly reduced the staff workload by partially automating the
marking process.

One huge benefit is that the experiment has yielded a large corpus
of data: 2.5 hours work by 64 students sampled at 30 second
intervals, or 19200 data points. One possibility is to examine this
for evidence of plagiarism, as noted above, which would help to
refine the rules for conducting future exams. Other data on the
frequency of particular types of error might also prove valuable.

With the success of this experiment, authoring tools to enable
others to make use of this system are a prime requirement. Work
is currently underway to develop suitable tools and to integrate

the exam delivery system with other online assessment tools that
have already been developed by the author and his colleagues.

7. REFERENCES
[1] Arnow, D. and Barshay, O. Online Programming

Examinations using WebToTeach. Proceedings of ITiCSE
’99 (Cracow, June 1999). ACM Press, 21–23.

[2] Davies, P., Hansen, S., Salter, G. and Simpson, K. Online
Assessment with Large Classes: Issues, Methodologies and
Case Studies. Proceedings of WebNet ’99 (Honolulu,
October 1999). AACE, 1498–1499.

[3] English, J. and Siviter, P. Experience with an Automatically
Assessed Course. Proceedings of ITiCSE 2000 (Helsinki,
July 2000). ACM Press, 168–171.

[4] Jackson, D. A Semi-Automated Approach to Online
Assessment. Proceedings of ITiCSE 2000 (Helsinki, July
2000). ACM Press, 164–167.

[5] Mason, D.V. and Woit, D. Integrating Technology into
Computer Science Examinations. Proceedings of SIGCSE
’98 (Atlanta, February 1998). ACM Press, 140–144.

[6] Medley, D.M. Online Finals for CS1 and CS2. Proceedings
of ITiCSE ’98 (Dublin, August 1998). ACM Press, 178–180.

[7] Ryan, J.J.C.H. Student Plagiarism in an Online World. Prism
(December 1998). ASEE. Available online:
http://www.asee.org/prism/december

[8] Smythe, C., Shepherd, E., Brewer, L. and Lay, S. IMS
Question & Test Interoperability Specification 1.2
(September 2001). Available online:
http://www.imsproject.org/question/index.html

54

