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1. ABSTRACT 
Algorithmics is a problem solving activity. 
Examination questions must reflect this nature 
of the domain. They must lead to open 
answers, but the specific criteria used in 
grading these answers must be clearly 
understood by the students. In this paper, we 
explain which criteria we use in the context of 
a course on algorithmics given to first year 
students in Informatics and in Engineering. 
Our experience shows that the teaching of very 
important topics in Computing Science can 
never be automated. 
2. ALGORITHMICS AND PROBLEM 
SOLVING 
Algorithmics is a problem solving activity. But, in 
algorithm&, instead of solving a particular “one-shot” 
problem, we have to produce a way of systematically 
solving instances of problems belonging to a given class. 
Moreover. the systematic way (i.e. the algorithm) of solving 
any instance must be executable by a mechanism devoid of 
intelligence. 

Algorithmics must be clearly disconnected from 
programming languages : the principles which form the 
hard core of the discipline are language-independent. There 
is no need lo tie the domain to a specific programming 
language as it is frequently the case in published textbooks. 
Students musl understand from the outset that they are 
learning general principles which are applicable to a 
multitude of present or future programming languages. 

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation on 
the first page. To copy otherwise, to republish, to post on servers 
or to redistribute to lists, requires prior specific permission and/or a 
fee. 

ITiCSE ‘98 Dublin, Ireland 

0 1998 ACM I-581 l3-000-7/98/0008... $5.00 

3. CORRECTNESS ARGUMENTATION 
AND EFFICIENCY 
As the designed algorithm must solve each instance of a 
problem in a given class, there must be an argumentation 
explaining that it is the case. The usual term “algorithm 
correctness” may be misleading; the students must 
understand that they have to produce a convincing argument 
proving that the algorithm they have written is correct. This 
argument must be set in a such way that it is 
comprehensible by other persons who share some common 
background with the designer of the algorithm. It helps if 
the presentation of the argumentation follows a method 
known and mastered by others : that allows criticisms. 
Besides correctness, the efficiency of the designed 
algorithm is an important point. Students must understand 
that efficiency is predictable without any recourse to an 
actual run on an actual equipment. With the help of a purely 
mental model of a computer, it is possible to decide whether 
some design decision will increase the efficiency of the 
algorithm or not. The fact that a specified algorithm has an 
actual computing time which is logarithmic, linear, 
quadratic or cubic can be derived from a close study of the 
algorithm text. The efficiency of an actual computation is 
not simply dependent on the actual hardware 
implementation; usually, the decisions taken during the 
design of the algorithm will set limits upon the attainable 
efficiency on an actual equipment. 

4. OUTLINE OF OUR LECTURES ON 
ALGORITHMICS 
The audience is composed of university students in 
Informatics (first year) and in Engineering (second year). In 
order to apply the principles stated above, we use a 
programming meta-language, insisting on the use of loop 
invariants in the documentation of the correctness 
argumentation, and introducing several efficiency 
paradigms as guidelines for the design of algorithms. 

4.1 Meta-Language 
The meta-language is the “guarded command programming 
language”, as described by E.W. Dijkstra in [l]. In this 
language, besides the assignment command, we have two 
types of commands : the alternative command and the 
repetitive one. This language is used for the description of 
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the several steps in the design of an algorithm. There is no 
implementation of the language, but it is explained how the 
repetitive and alternative commands can be “translated” 
into current (imperative) programming languages. In the 
programming laboratory, Pascal is used as implementation 
language, but it is made clear that, by suitable translation 
rules, any other imperative language can be used. The goal 
is to make a clear distinction between two tasks : on one 
hand, the design of an algorithm (in the meta-language), and 
on the other hand, the use of an actual programming 
language for the implementation of an already designed 
algorithm. 

4.2 Correctness Argumentation 
Emphasis is being placed on the use of loop invariants for 
the argumentation of the correctness. In nearly all 
textbooks, loop invariant is presented as an important 
method for correctness of algorithm, but it is hardly used 
(even in the same textbooks !). Usually, loop invariants are 
expounded in conjunction with the use of first-order logic 
formulas. There is no obligation to do so : the loop 
invariant may be expressed as a general predicate (even 
stated in natural language) or as a schematic graphical 
representation of the stated situation at the end of each 
iteration of the loop body (for instance, a schematic 
representation of the properties of the elements in sections 
of an array). The important point is the understanding that 
the general condition stated as the invariant of the loop 
must be true just before the first iteration and after each 
iteration, and that after the end of the repetitive command, 
the logical conjunction of the invariant and the negation of 
the loop boolean expression is true. For termination of the 
loop, we use t -function (as in [I]). 

The respect of the rules of use of loop invariants is the 
common base between the algorithm designer and outside 
observers who have to be convinced by the argumentation 
of correctness. It is stated that these outsiders are expecting 
that the loop invariants are provided as a backbone of the 
correctness argumentation. (In practice, these outsiders are 
the lecturer and his assistants.) 

The presentation of the design of the algorithm follows the 
general principle used in “literate programming” ([2]) : a 
sequence of program chunks which can be fitted together in 
order to compose the complete algorithm. A short 
explaining paragraph in natural language (with - if required 
- loop invariant in a suitable representation format) must 
accompany each program chunk. 

4.3 Efficiency Paradigms 
In order to act as guidelines in the design of an algorithm, 
two efficiency paradigms are introduced : 
a) “divide and conquer”, which is the basis of so many 
algorithms with a logarithmic complexity; 

b) “to turn iteration to the best account”, which occurs if an 
iteration can be made faster by using values computed by 
previous iterations: for instance, building a table of squares 
by using the fact that : (n+1)2 = (n2+2n+l). This efficiency 
paradigm leads to the introduction of data structures needed 
for keeping some of the values computed by previous 
iterations. 

4.4 Examples of Algorithms 
The application of the three principles, (meta-language, 
correctness, efficiency), is exemplified by the study of 
classical algorithms : finding the integer square root of an 
integer, linear and dichotomic search in a table, sorting 
(bubblesort, heapsort, quicksort). 

5. GRADING THE STUDENT ABILITY TO 
DESIGN ALGORITHMS 
In order to grade the student ability to design algorithms, 
we use algorithmic problems based on a kind of pattern 
matching in two-dimensional array. The purpose of the 
problems is to detect the elements of the array which verify 
a given property. The property involves group of array 
elements; the number of elements belonging to one group is 
a parameter in the problem. A example of such a problem is 
given in the next section. 

5.1 Example of an Algorithmic Problem 
Let an array B[O..M-1, O..N-11 with M rows and N 
columns, (O-CM and O&J). The elements of the array are 
integers. 

Let an element B[i, jl andp an integer such that @ >=l). 

By definition, B[i, jl is origin of a peak@) if the following 
three conditions hold for the specified elements of the 
array: 

1) The elements B[i, j], B[i-p, j+p] and B[i, j+29] belong 
to the array B. 
2) B[i, j] is origin of an oblique composed of @+l) 
elements for which the condition 
a k : O<=k<p : B [i-k, j+k] <= B [i-(k+l), j+(k+l)]) is true. 
3) B[i, j+2*pl is origin of an oblique composed of @+l) 
elements for which the condition 

(A k : O<=k<p : B[i-k, j+29 -k] <= B[i-(k+l), j+29 - 
(k+l)]) is true. 
From the definition of a peak(p), it results that, considering 
all the possible values for p @ >=l), an element B[i, j] can 
be the origin of zero, one or many peak(p). 

Let an integer value pval(i,j) defined as follows : 
a) if B[i, j] is not the origin of any peak(p), pvaZ(i,j) is 
equal to zero; 

b) if B[i, j] is the origin of one or many peak(p), pvaZ(i,j) is 
equal to the maximum value of p among all the peak(p) the 
origin of which is B[i, j]. 



By definition, an element B[i, j] is called a T-element if the 
following two conditions hold : 
1) pvul(i,j) >=2 
2) @vul(iJ+ 1 j >= 1) and @vul(i,j+ 1) <= pval(i,j) - 1) 
Design an algorithm which : 
1) determines the maximum value of the pvul(i,j) for a 
given array B (the result must be in integer variable pmax) 
and the number of elements in B such that pvul(ij) is equal 
10 the value of pmax (the result must be in integer variable 
nbel). 

2) builds a linked list (access pointer psk) which contains 
one cell for each element B[i, j] which is a T-element such 
that pvul(i,j) = pmax ; the cell slores the indices (i, j) of 
B[i, j] and the value of pvul(i,j+l). 

If there is no T-element in the array B, the list is empty. 

5.2 Discussion about this Example 
There are many answers for the exam question (given in 
section 4.1). The students have room for exercising their 
creativity in the design of one algorithm among all the 
possible ones. They know that the answer will be graded 
according to the following criteria : 
a) the algorithm must be expounded in a systematic manner 
(program chunks with suitable justifications), and the 
algorithm must be correct, with a convincing 
argumentation; 

b) among the possible algorithms, a distinction is made 
between the simple ones and the advanced ones; a simple 
algorithm is an algorithm designed without application of 
an efficiency paradigm; an advanced algorithm tries to turn 
iterations to the best account and to exploit some properties 
in the problem statement in order to reduce the computation 
load. 
The students know that a simple algorithm is marked 15/20 
at most, advanced algorithm will be marked in the bracket 
(16/20 to 20/2(J) in proportion to its efficiency and its 
originality in the solution. Incorrect advanced algorithms 
are marked below correct simple algorithms; correctness 
takes precedence over ef’ficiency. 

For instance, for the given problem, a simple algorithm will 
compute pval(i,j) for each B [ij], starting from scratch for 
each element. An advanced algorithm could use auxiliary 
arrays in order to store the length (in number of elements) 
of the increasing sections of the obliques; besides that, by 
scanning the array row by row starting from row (M-l), it is 
possible to reduce the number of array elements which are 
examined by the algorithm in function of the current value 
of pmax, (similarly, some columns can be skipped). An 
auxiliary array containing the pval(ijj values can be built 
explicitly and used for the building of the linked list, or a 
current Iinkcd list can be maintained and updated during 

the scanning. Elaborated solutions can be devised by 
scanning the obliques from the element B[i-p, j+pl, etc. 
The problem stated in the example may seem quite abstract; 
this abstractness is a deliberate choice; the students must 
concentrate on the two aspects that we consider as essential 
for the design of algorithms : correctness and efficiency. 
Moreover, problem solving abilities are involved in the way 
the student decides to tackle the design of the algorithm. 
The designed algorithm must follow a plan, and the 
structure of this plan must be based on some rationale. We 
insist on the exposition of the reasons behind the several 
decisions taken during the design. 

6. INTEGRATING TECHNOLOGY INTO 
EDUCATION 
Our experience shows that there exist limits to the 
integration of technology into computing science education. 
The kind of examination questions we use is not suitable 
for automatic correction or automatic grading by computer. 

We believe that in very intellectual domains, such as the 
design of algorithms, the students must have the 
opportunity to submit their own answers which may not 
belong to a set of known solutions. In scientific domains, 
topics beyond the pure training in skills cannot be 
automated. All knowledge with durable contents is far 
beyond pure training. In this case, the introduction of 
technology is limited to the use of some basic tools such as 
text editors, compilers. 

7. CONCLUSIONS 
We have outline the basic structure of a course on 
algorithmics geared to the acquisition of what we call 
“algorithmic abilities” : expounding the correctness of a 
designed algorithm and taking decisions for improving its 
efficiency. Problem statements are selected in order to 
induce students to practice these algorithmic abilities in a 
creative manner. The way the answer is marked follows a 
simple pattern which is well-understood by the students : 
correctness comes first (they may decide to develop a 
simple program and get good marks), efficiency is second 
(but it may lead to better marks). The main lesson we try to 
convey to the students is that designing an algorithm is not 
producing lines of code in a specified programming 
language, but is a very intellectual activity where the 
rationale behind the final product must be well-argumented 
and carefully expounded. 
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