
The Problem of Examination Questions in Algorithmics
P.A. de Marneffe

Service d’lnformatique (Algorithmique)
lnstitut Montefiore Universit6 de Liege

B4000 Sat-t Tilman (Liege) Belgium

PA.deMarneffe@ ulg.ac.be

1. ABSTRACT
Algorithmics is a problem solving activity.
Examination questions must reflect this nature
of the domain. They must lead to open
answers, but the specific criteria used in
grading these answers must be clearly
understood by the students. In this paper, we
explain which criteria we use in the context of
a course on algorithmics given to first year
students in Informatics and in Engineering.
Our experience shows that the teaching of very
important topics in Computing Science can
never be automated.
2. ALGORITHMICS AND PROBLEM
SOLVING
Algorithmics is a problem solving activity. But, in
algorithm&, instead of solving a particular “one-shot”
problem, we have to produce a way of systematically
solving instances of problems belonging to a given class.
Moreover. the systematic way (i.e. the algorithm) of solving
any instance must be executable by a mechanism devoid of
intelligence.

Algorithmics must be clearly disconnected from
programming languages : the principles which form the
hard core of the discipline are language-independent. There
is no need lo tie the domain to a specific programming
language as it is frequently the case in published textbooks.
Students musl understand from the outset that they are
learning general principles which are applicable to a
multitude of present or future programming languages.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

ITiCSE ‘98 Dublin, Ireland

0 1998 ACM I-581 l3-000-7/98/0008... $5.00

3. CORRECTNESS ARGUMENTATION
AND EFFICIENCY
As the designed algorithm must solve each instance of a
problem in a given class, there must be an argumentation
explaining that it is the case. The usual term “algorithm
correctness” may be misleading; the students must
understand that they have to produce a convincing argument
proving that the algorithm they have written is correct. This
argument must be set in a such way that it is
comprehensible by other persons who share some common
background with the designer of the algorithm. It helps if
the presentation of the argumentation follows a method
known and mastered by others : that allows criticisms.
Besides correctness, the efficiency of the designed
algorithm is an important point. Students must understand
that efficiency is predictable without any recourse to an
actual run on an actual equipment. With the help of a purely
mental model of a computer, it is possible to decide whether
some design decision will increase the efficiency of the
algorithm or not. The fact that a specified algorithm has an
actual computing time which is logarithmic, linear,
quadratic or cubic can be derived from a close study of the
algorithm text. The efficiency of an actual computation is
not simply dependent on the actual hardware
implementation; usually, the decisions taken during the
design of the algorithm will set limits upon the attainable
efficiency on an actual equipment.

4. OUTLINE OF OUR LECTURES ON
ALGORITHMICS
The audience is composed of university students in
Informatics (first year) and in Engineering (second year). In
order to apply the principles stated above, we use a
programming meta-language, insisting on the use of loop
invariants in the documentation of the correctness
argumentation, and introducing several efficiency
paradigms as guidelines for the design of algorithms.

4.1 Meta-Language
The meta-language is the “guarded command programming
language”, as described by E.W. Dijkstra in [l]. In this
language, besides the assignment command, we have two
types of commands : the alternative command and the
repetitive one. This language is used for the description of

74

the several steps in the design of an algorithm. There is no
implementation of the language, but it is explained how the
repetitive and alternative commands can be “translated”
into current (imperative) programming languages. In the
programming laboratory, Pascal is used as implementation
language, but it is made clear that, by suitable translation
rules, any other imperative language can be used. The goal
is to make a clear distinction between two tasks : on one
hand, the design of an algorithm (in the meta-language), and
on the other hand, the use of an actual programming
language for the implementation of an already designed
algorithm.

4.2 Correctness Argumentation
Emphasis is being placed on the use of loop invariants for
the argumentation of the correctness. In nearly all
textbooks, loop invariant is presented as an important
method for correctness of algorithm, but it is hardly used
(even in the same textbooks !). Usually, loop invariants are
expounded in conjunction with the use of first-order logic
formulas. There is no obligation to do so : the loop
invariant may be expressed as a general predicate (even
stated in natural language) or as a schematic graphical
representation of the stated situation at the end of each
iteration of the loop body (for instance, a schematic
representation of the properties of the elements in sections
of an array). The important point is the understanding that
the general condition stated as the invariant of the loop
must be true just before the first iteration and after each
iteration, and that after the end of the repetitive command,
the logical conjunction of the invariant and the negation of
the loop boolean expression is true. For termination of the
loop, we use t -function (as in [I]).

The respect of the rules of use of loop invariants is the
common base between the algorithm designer and outside
observers who have to be convinced by the argumentation
of correctness. It is stated that these outsiders are expecting
that the loop invariants are provided as a backbone of the
correctness argumentation. (In practice, these outsiders are
the lecturer and his assistants.)

The presentation of the design of the algorithm follows the
general principle used in “literate programming” ([2]) : a
sequence of program chunks which can be fitted together in
order to compose the complete algorithm. A short
explaining paragraph in natural language (with - if required
- loop invariant in a suitable representation format) must
accompany each program chunk.

4.3 Efficiency Paradigms
In order to act as guidelines in the design of an algorithm,
two efficiency paradigms are introduced :
a) “divide and conquer”, which is the basis of so many
algorithms with a logarithmic complexity;

b) “to turn iteration to the best account”, which occurs if an
iteration can be made faster by using values computed by
previous iterations: for instance, building a table of squares
by using the fact that : (n+1)2 = (n2+2n+l). This efficiency
paradigm leads to the introduction of data structures needed
for keeping some of the values computed by previous
iterations.

4.4 Examples of Algorithms
The application of the three principles, (meta-language,
correctness, efficiency), is exemplified by the study of
classical algorithms : finding the integer square root of an
integer, linear and dichotomic search in a table, sorting
(bubblesort, heapsort, quicksort).

5. GRADING THE STUDENT ABILITY TO
DESIGN ALGORITHMS
In order to grade the student ability to design algorithms,
we use algorithmic problems based on a kind of pattern
matching in two-dimensional array. The purpose of the
problems is to detect the elements of the array which verify
a given property. The property involves group of array
elements; the number of elements belonging to one group is
a parameter in the problem. A example of such a problem is
given in the next section.

5.1 Example of an Algorithmic Problem
Let an array B[O..M-1, O..N-11 with M rows and N
columns, (O-CM and O&J). The elements of the array are
integers.

Let an element B[i, jl andp an integer such that @ >=l).

By definition, B[i, jl is origin of a peak@) if the following
three conditions hold for the specified elements of the
array:

1) The elements B[i, j], B[i-p, j+p] and B[i, j+29] belong
to the array B.
2) B[i, j] is origin of an oblique composed of @+l)
elements for which the condition
a k : O<=k<p : B [i-k, j+k] <= B [i-(k+l), j+(k+l)]) is true.
3) B[i, j+2*pl is origin of an oblique composed of @+l)
elements for which the condition

(A k : O<=k<p : B[i-k, j+29 -k] <= B[i-(k+l), j+29 -
(k+l)]) is true.
From the definition of a peak(p), it results that, considering
all the possible values for p @ >=l), an element B[i, j] can
be the origin of zero, one or many peak(p).

Let an integer value pval(i,j) defined as follows :
a) if B[i, j] is not the origin of any peak(p), pvaZ(i,j) is
equal to zero;

b) if B[i, j] is the origin of one or many peak(p), pvaZ(i,j) is
equal to the maximum value of p among all the peak(p) the
origin of which is B[i, j].

By definition, an element B[i, j] is called a T-element if the
following two conditions hold :
1) pvul(i,j) >=2
2) @vul(iJ+ 1 j >= 1) and @vul(i,j+ 1) <= pval(i,j) - 1)
Design an algorithm which :
1) determines the maximum value of the pvul(i,j) for a
given array B (the result must be in integer variable pmax)
and the number of elements in B such that pvul(ij) is equal
10 the value of pmax (the result must be in integer variable
nbel).

2) builds a linked list (access pointer psk) which contains
one cell for each element B[i, j] which is a T-element such
that pvul(i,j) = pmax ; the cell slores the indices (i, j) of
B[i, j] and the value of pvul(i,j+l).

If there is no T-element in the array B, the list is empty.

5.2 Discussion about this Example
There are many answers for the exam question (given in
section 4.1). The students have room for exercising their
creativity in the design of one algorithm among all the
possible ones. They know that the answer will be graded
according to the following criteria :
a) the algorithm must be expounded in a systematic manner
(program chunks with suitable justifications), and the
algorithm must be correct, with a convincing
argumentation;

b) among the possible algorithms, a distinction is made
between the simple ones and the advanced ones; a simple
algorithm is an algorithm designed without application of
an efficiency paradigm; an advanced algorithm tries to turn
iterations to the best account and to exploit some properties
in the problem statement in order to reduce the computation
load.
The students know that a simple algorithm is marked 15/20
at most, advanced algorithm will be marked in the bracket
(16/20 to 20/2(J) in proportion to its efficiency and its
originality in the solution. Incorrect advanced algorithms
are marked below correct simple algorithms; correctness
takes precedence over ef’ficiency.

For instance, for the given problem, a simple algorithm will
compute pval(i,j) for each B [ij], starting from scratch for
each element. An advanced algorithm could use auxiliary
arrays in order to store the length (in number of elements)
of the increasing sections of the obliques; besides that, by
scanning the array row by row starting from row (M-l), it is
possible to reduce the number of array elements which are
examined by the algorithm in function of the current value
of pmax, (similarly, some columns can be skipped). An
auxiliary array containing the pval(ijj values can be built
explicitly and used for the building of the linked list, or a
current Iinkcd list can be maintained and updated during

the scanning. Elaborated solutions can be devised by
scanning the obliques from the element B[i-p, j+pl, etc.
The problem stated in the example may seem quite abstract;
this abstractness is a deliberate choice; the students must
concentrate on the two aspects that we consider as essential
for the design of algorithms : correctness and efficiency.
Moreover, problem solving abilities are involved in the way
the student decides to tackle the design of the algorithm.
The designed algorithm must follow a plan, and the
structure of this plan must be based on some rationale. We
insist on the exposition of the reasons behind the several
decisions taken during the design.

6. INTEGRATING TECHNOLOGY INTO
EDUCATION
Our experience shows that there exist limits to the
integration of technology into computing science education.
The kind of examination questions we use is not suitable
for automatic correction or automatic grading by computer.

We believe that in very intellectual domains, such as the
design of algorithms, the students must have the
opportunity to submit their own answers which may not
belong to a set of known solutions. In scientific domains,
topics beyond the pure training in skills cannot be
automated. All knowledge with durable contents is far
beyond pure training. In this case, the introduction of
technology is limited to the use of some basic tools such as
text editors, compilers.

7. CONCLUSIONS
We have outline the basic structure of a course on
algorithmics geared to the acquisition of what we call
“algorithmic abilities” : expounding the correctness of a
designed algorithm and taking decisions for improving its
efficiency. Problem statements are selected in order to
induce students to practice these algorithmic abilities in a
creative manner. The way the answer is marked follows a
simple pattern which is well-understood by the students :
correctness comes first (they may decide to develop a
simple program and get good marks), efficiency is second
(but it may lead to better marks). The main lesson we try to
convey to the students is that designing an algorithm is not
producing lines of code in a specified programming
language, but is a very intellectual activity where the
rationale behind the final product must be well-argumented
and carefully expounded.

8. REFERENCES
[l] Dijkstra, E.W.; A discipline of Programming, Prenlice-

Hall, Englewood Cliffs, N.J. 1976; 217 p.

[2] Knuth, DE.; Literate Programming, The Computer
Journal, Vol. 27 (1984), pp. 97-l 11.

76

