1 Euler's proof of the infinity of primes

Let's begin by Euler's proof that there are an infinity of primes, a very 'eulerian' proof.

If p is prime, then $(1 / p)<1$ and the sum of the geometric progression is

$$
\sum_{k=0}^{\infty} \frac{1}{p^{k}}=\frac{1}{1-\frac{1}{p}} .
$$

Let's assume that the primes form a finite set $\mathbf{P}=\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$. Let's do the products of all the sums of the geometric progressions (Euler loved these kinds of algebraic malabarisms). It is not to difficult to see that the result is

$$
\prod_{i=1}^{n}\left(\sum_{k=0}^{\infty} \frac{1}{p_{i}^{k}}\right)
$$

that is precisely the sum of all the fractions where the denominators are f the form $p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}} \ldots p_{n}^{x_{n}}, x_{i}=1,2, \ldots \infty$ and every combination of x_{i} appears only once. This means that

$$
\prod_{i=1}^{n}\left(\sum_{k=0}^{\infty} \frac{1}{p_{i}^{k}}\right)=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which is divergent, but

$$
\prod_{i=1}^{n}\left(\sum_{k=0}^{\infty} \frac{1}{p_{i}^{k}}\right)=\prod_{i=1}^{n} \frac{1}{1-\frac{1}{p_{i}}}
$$

is clearly inite, and we reach a contradiction.

Sum of the inverse of the primes

Let N be a positive integer. Every $n \leq N$ is a unique product of primes $p, p \leq n \leq N$. Also, for each prime p,

$$
\sum_{k=1}^{\infty} \frac{1}{p^{k}}=\frac{1}{1-\frac{1}{p}}
$$

Therefore, as seen above

$$
\sum_{n=1}^{N} \frac{1}{n} \leq \prod_{p \leq N}\left(\sum_{k=1}^{\infty} \frac{1}{p^{k}}\right)=\prod_{p \leq N} \frac{1}{1-\frac{1}{p}}
$$

To eliminate the product we apply logarithms

$$
\log \prod_{p \leq N} \frac{1}{1-\frac{1}{p}}=-\sum_{p \leq N} \log \left(1-\frac{1}{p}\right) .
$$

Expanding $\log (1-1 / p)$ by the expansion of $\log (1+x)$ we have that for each prime p

$$
-\log \left(1-\frac{1}{p}\right)=\sum_{m=1}^{\infty} \frac{1}{m p^{m}}
$$

now

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{1}{m p^{m}} & \leq \frac{1}{p}+\frac{1}{2 p^{2}}\left(\sum_{h=0}^{\infty} \frac{1}{p^{h}}\right)= \\
& =\frac{1}{p}+\frac{1}{2 p^{2}} \frac{1}{1-\frac{1}{p}}=\frac{1}{p}+\frac{1}{2 p(p-1)}<\frac{1}{p}+\frac{1}{p^{2}}
\end{aligned}
$$

So

$$
\log \sum_{n=1}^{N} \frac{1}{n} \leq \log \prod_{p \leq N} \frac{1}{1-\frac{1}{p}} \leq \sum_{p \leq N} \frac{1}{p}+\sum_{p \leq N} \frac{1}{p^{2}} \leq \sum_{p} \frac{1}{p}+\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

But, $\sum_{n=1}^{\infty}\left(1 / n^{2}\right)=\left(\pi^{2} / 6\right)$-one of Euler's stellar results- and if we make N tend to infinity, $\sum(1 / p)$ must be divergent.

