
1 Euler’s proof of the infinity of primes

Let’s begin by Euler’s proof that there are an infinity of primes, a very ‘eule-
rian’ proof.

If p is prime, then (1/p) < 1 and the sum of the geometric progression is
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Let’s assume that the primes form a finite set P = {p1, p2, . . . pn}. Let’s do
the products of all the sums of the geometric progressions (Euler loved these
kinds of algebraic malabarisms). It is not to difficult to see that the result is
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that is precisely the sum of all the fractions where the denominators are f the
form px1
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n , xi = 1, 2, . . .∞ and every combination of xi appears

only once. This means that
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which is divergent, but
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is clearly inite, and we reach a contradiction.

Sum of the inverse of the primes

Let N be a positive integer. Every n ≤ N is a unique product of primes
p, p ≤ n ≤ N. Also, for each prime p,
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Therefore, as seen above
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To eliminate the product we apply logarithms
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Expanding log(1− 1/p) by the expansion of log(1 + x) we have that for each
prime p
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But,
∑∞

n=1(1/n
2) = (π2/6) —one of Euler’s stellar results— and if we make

N tend to infinity,
∑

(1/p) must be divergent.


