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DRAFT

1 Introduction

In the everyday life we solve a lot of problems not caring at all about precision
and perfection of the solution. The increase of precision leads to an increase
of the amount of information whose signi�cance then decreases until a point
is reached, after which precision and signi�cance are mutually excluding
characteristics. Then, imprecision (vagueness) cannot be avoided and often
is necessary to convey relevant information [4].

This vagueness, called fuzziness, can raise during the process of grouping
objects having some property P . In general, P cannot characterize un-
ambiguously the group of objects because there can exist some borderline

elements, which make unsharp the boundaries of the set

X = {x | x has the property P}.

This led to the development of fuzzy set theory and fuzzy logic (see [8, 9, 7]
and references therein).

Since the introduction of the notion of fuzzy set , the term �fuzzy logic�
has been largely used but it is important to make some distinctions. In its

1



wide sense, fuzzy logic is a synonymous of fuzzy set theory. In its narrow

sense, it can be considered as a logical system which aims at a formalization
of approximate reasoning. Fuzzy logic originates with the attempt to handle
concepts which admit many (more than two) degrees of truth and it is based
on a comparative notion of truth: one statement may be more true than
another one. From this point of view fuzzy logic is worth studying [2].

The path from initial considerations about fuzziness to a formal logical
system is not straightforward. Nowadays, the various approaches to many-

valued logics found in the literature are competing as natural candidates to
o�er to the engineering discipline of fuzzy logic the theoretical foundations
that have been lacking for several years.

Fuzzy logic is naturally described as the logic of degrees of truth, thus
di�erentiating itself from logics of belief, and from probabilistic logic and
modal logic, which are not truth-functional. Connectives of a logic behave
truth-functionally when the value of the connection of some propositions is
a function of the value of the same propositions only.

In order to set a formal framework to deal with fuzzy or uncertain rea-
soning, if we require the set of truth-values to be linearly ordered, and the
connectives of the logic to be truth-functional, then a major tool used in
fuzzy logic for modelling uncertain information is the de�nition of suitable
triangular norms, t-norms for short [3].

In this work we propose a t-norm based approach for handling imprecision
in P systems. P systems, initially proposed in [5], are a class of distributed
and parallel computing devices inspired by the architecture of living cells
and the way biological substances are both modi�ed and moved among in-
ternal organelles. In a P system, each compartment (an organelle inside the
cell) can be seen as a computing unit, having its own data and its local
program (molecular substances and biochemical reactions), and all compart-
ments considered as a whole (the cell) can be seen as an �unconventional�
computing device. In particular, each compartment is delimited and sepa-
rated from the rest by a membrane; the whole computing unit is formally
characterized by a membrane structure, where membranes can be hierarchi-
cally placed inside a unique external membrane delimiting the entire cell. All
membranes are semi-permeable barriers, which either allow some substances
to move inwards or outwards, and consequently change their location in the
membrane structure, or block the movement of some other substances. The
biological substances and reactions are represented by means of objects and
evolution rules. Objects are usually symbols or strings over a given alpha-
bet, evolution rules are given as rewriting rules with target indications, thus
describing both the transformation and the communication of objects.

A computation in P systems is obtained by starting from an initial con-
�guration, identi�ed by the membrane structure, the objects and the rules
initially present inside it, and then letting the system evolve. The application
of rules is performed in a nondeterministic and maximal parallel manner: all
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the applicable rules have to be used to modify all objects which can be the
subject of a rule, and this is done in parallel for all membranes (a universal
clock is assumed to exist). Whenever no rule can be further applied, the com-
putation halts and the output is de�ned in terms of the objects sent out the
external membrane or, alternatively, collected inside a speci�ed membrane.
No output is obtained if the computation never halts (that is, whenever a
rule can be continuously applied).

Further notions on many variants of P systems, as well as an updated bib-
liography, can be found in [6] and at http://psystems.disco.unimib.it.

2 Triangular norms

De�nition 2.1 (t-norm) A t-norm is any operator
∧∗: [0, 1]2 → [0, 1] satis-

fying:

1. Associativity: x
∧∗ (y

∧∗ z) = (x
∧∗ y)

∧∗ z.

2. Commutativity: x
∧∗ y = y

∧∗ x.

3. Monotonicity in each argument: If y1 ≤ y2 then x
∧∗ y1 ≤ x

∧∗ y2. If
x1 ≤ x2 then x1

∧∗ y ≤ x2
∧∗ y.

4. Absorption: x
∧∗ 0 = 0 and Unity: x

∧∗ 1 = x.

A t-norm
∧∗ is continuous if it is continuous as a real-valued function with

respect to each variable.

A t-conorm is the dual operator of a t-norm.

De�nition 2.2 (t-conorm) A t-conorm is any operator
∗
∨: [0, 1]2 → [0, 1]

satisfying:

1. Associativity: x
∗
∨ (y

∗
∨ z) = (x

∗
∨ y)

∗
∨ z.

2. Commutativity: x
∗
∨ y = y

∗
∨ x.

3. Monotonicity in each argument: If y1 ≤ y2 then x
∗
∨ y1 ≤ x

∗
∨ y2. If

x1 ≤ x2 then x1
∗
∨ y ≤ x2

∗
∨ y.

4. Absorption: x
∗
∨ 0 = x and Unity: x

∗
∨ 1 = 1.

As we can note, t-norms and t-conorms di�er only in the boundary con-
dition imposed.

Triangular norms can be used to model graded-truth conjunction. Some
natural requirements such a conjunction should satisfy are met by the de�-
nition of t-norm. Indeed, the truth degree of the conjunction of propositions
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A and B should not depend on the order in which A and B are connected.
The same is true for the truth degree of conjunctions of several propositions
A1, A2, . . . , Au. These two properties are witnessed by commutativity and
associativity. It is also natural to assume that the truth degree of the con-
junction of a proposition with a complete falsity should be completely false,
thus justifying the absorption requirement. Analogously, the conjunction of
a proposition with a complete truth should not have smaller truth degree
than the proposition has. Finally, we should expect that high truth degrees
of propositions A and B would correspond to a high truth degree of their
conjunction, and this is assured by the fact that t-norms are increasing func-
tions in each argument. Note also that the absorption and unity properties
state that each t-norm coincides with the conjunctive connective of classical
logic when properly restricted to the domain {0, 1}2.

There exist uncountably many t-norms. If we restrict our attention to
continuous t-norms only, we shall see that there exist three main t-norms,
all the others arising as suitable combinations of them:

• �ukasiewicz t-norm: x� y = max(0, x + y − 1).

• Gödel t-norm: x ∧ y = min(x, y).

• Product t-norm: x · y = xy, product of real numbers.

An analogous approach to graded-truth implication requires that the truth
degree of A implies B should be high when the truth degree of A is not
signi�cantly higher than the truth degree of B: then any binary operator⇒,
chosen as semantics of an implication connective, should be non-increasing
in its �rst argument and non-decreasing in the second one. To model a sound
and powerful rule of graded-truth modus ponens, we require that from lower
bounds a, c of the truth degrees of propositions A and A ⇒ B respectively,
we can infer a lower bound b for the truth-degree of B. If we combine a and c

by some �xed t-norm
∧∗, then we may require c = a ⇒ b to be the maximum

value such that a
∧∗ c ≤ b is satis�ed. Actually, the following lemma holds:

Lemma 2.1 Given any continuous t-norm
∧∗, there is a unique operator

⇒∧∗
: [0, 1]2 → [0, 1], such that, for all x, y, z ∈ [0, 1]:

x
∧∗ z ≤ y if and only if z ≤ x ⇒∧∗

y.

The operator ⇒∧∗
is called the residuum of

∧∗ and is de�ned by:

x ⇒∧∗
y = max(z|x ∧∗ z ≤ y).

For any continuous t-norm, the residuum operation coincides with the truth-
table of classical implication, when its domain is restricted to {0, 1}2.
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The residuum operators induced by the three main continuous t-norms
are:

• �ukasiewicz implication: x ⇒� y = min(1, 1− x + y).

• Gödel implication: x ⇒∧ y =
{

1 if x ≤ y
y otherwise.

• Product implication: x ⇒· y =
{

1 if x ≤ y
y/x otherwise.

The choice of a (continuous) t-norm
∧∗ determines an entire propositional

many-valued logic, with its connectives of conjunction, implication, negation,
and modus ponens.

Hájek's Basic Logic BL [2], which is presented as a traditional Hilbert
system with a �nite set of axiom schemata, is the logic of all continuous
t-norms and their residua. That is, BL proves a formula ϕ i� the standard
interpretation of ϕ evaluates identically to 1, in each t-norm algebra

([0, 1],
∧∗,⇒∧∗

, 0).

The class of all algebraic models of BL forms the algebraic variety BL.
The study of subvarieties of BL is the main tool to derive results in all
the most important many-valued logics, as �ukasiewicz, Gödel, and Product
logics. These results concern both logical and complexity aspects: for the
latter, the study of free algebras is of the foremost importance.

�ukasiewicz logic is unique among many-valued propositional logics be-
cause all its connectives (primitive and derived) have continuous functions
as their semantics.

3 P systems with vague boundaries

We assume the reader is familiar with the basic notions and notations of P
systems.

We brie�y recall that amembrane structure consists of a set of membranes
hierarchically embedded in a unique membrane, called the skin membrane.
The membrane structure is identi�ed with a string of correctly matching
square parentheses, placed in a unique pair of matching parentheses; each
pair of matching parentheses corresponds to a membrane. Each membrane
identi�es a region, delimited by it and the membranes (if any) immediately
inside it. Usually, a unique label is univocally associated to each membrane.
An object can be a symbol or a string over a speci�ed �nite alphabet V ;
multisets of objects are usually considered in order to describe the presence
of multiple copies of any given object. In the following, we will only con-
sider structured objects, that is strings. Objects are modi�ed by means of
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evolution rules which are, usually, context-free rewriting rules with an asso-
ciated target indication (tar, in short) of the form here, out, in. The target
indication determines the region where the object is communicated after the
application of the rule: if tar = here, then the object remains in the same
region; if tar = out, then the object exits from the region where it was
placed; if tar = in, then the object nondeterministically enters one of the
membranes immediately inside the region where the rule is applied, if any
inner region exists (otherwise the rule cannot be applied).

In this section we introduce the notion of a P system with vague bound-

aries, which satis�es some peculiar aspects not common with the classical
de�nition of P system:

• each object can be simultaneously present inside many regions, this
is formally expressed by assigning a membership value to it, denoting
�how much it belongs� to every region;

• each rule can be simultaneously active in many regions, this is formally
expressed by assigning a value to it, denoting �how much it is active�
inside every region;

• there is no crisp separation of regions, instead each membrane repre-
sents a vague boundary with respect to the adjacent regions.

As a consequence, we believe that the communication of objects can be
described with a t-norm approach (by evaluating the composition of the
truth degree of the objects with the truth degree of the rules) and it is no
more necessary to associate target indications to rules.

Formally, a P system with vague boundaries in the t-norm approach is
de�ned as

Π = (V, T, µ, M, R,Φ, (
∧∗,

∗
∨), io)

where:

• V is the alphabet of the system;

• T ⊆ V is the terminal (or output) alphabet;

• µ is a membrane structure consisting of n membranes, which are in-
jectively labelled by numbers in the set {1, . . . , n};

• M = {σ1, . . . , σp} is a (multi)set of strings over V , representing the
objects initially present in all regions of the system;

• R = {r1, . . . , rq} is a �nite set of context-free rewriting rules of the
form a → x, with a ∈ V, x ∈ V ∗, associated with the regions of µ;

• Φ = (µ1, . . . , µn) is the membership function initially associated with
the regions of µ, where µi : M ∪R → [0, 1] for all i = 1, . . . , n;
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• (
∧∗,

∗
∨) is the chosen pair of t-norm and t-conorm;

• io is a number in the set {1, . . . , n}∪{∞}, indicating the output region.

We denote by mi the membrane (and its corresponding region) labelled
with number i, i = 1, . . . , n, present in the membrane structure µ. Note that,
since we do not consider any dissolving or dividing action for membranes,
the membrane structure will never be modi�ed during any computation.

As in classical rewriting P systems, for each string that can be the sub-
ject of many evolution rules at the same time (possibly applicable on more
than one symbol in the string), we consider only one possibility to rewrite
it: we apply only one evolution rule (nondeterministically chosen among all
applicable rules) and we apply it over only one symbol in the string (non-
deterministically chosen among all rewritable symbols). Hence, no parallel
rewriting methods will be used here.

We consider the proposition �The string σj is in the region delimited by
mi� for every mi in µ, σj ∈ M , j = 1, . . . , p, and we denote it by µi(σj). In
the same way, we denote by µi(rk) the proposition �The rule rk is active in
the region delimited by mi� for every mi in µ, rk ∈ R, k = 1, . . . , q. Hence,
we have:

µi(σj) ∈ [0, 1], ∀i ∈ {1, . . . , n} ∀σj ∈ M,

µi(rk) ∈ [0, 1], ∀i ∈ {1, . . . , n} ∀rk ∈ R.

Consider two con�gurations C(t) = (µ,M (t)) of Π at time t and C(t+1) =
(µ,M (t+1)) of Π at time t + 1. For every σ ∈ M (t+1) let

Hσ = {(j, k) | σj ⇒ σ by using rule rk}

the multiset of couple of indexes (j, k) such that the string σ is obtained
from some string σj by application of some rule rk. For every σ ∈ M (t+1)

the truth value of the proposition �The string σ is in the region delimited by
mi� is the result of the following combination:

µi(σ) =
∗∨

(j,k)∈Hσ

(
µi(σj)

∧∗ µi(rk)
)

.

The value µi(σ) is evaluated for each string σ and for all membranes mi,
in any con�guration of the system. Hence, by considering the dynamical
update of �how much� each string �belongs� to every membrane, we can
determine the �communication� of strings, that is their movement across the
vague boundaries of Π.

Let us display the multiset Hσ as {(j1, k1), (j2, k2), . . . , (ju, ku)}. The
formula de�ning µi(σ) can be read as follows:
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EITHER σ is produced from σj1 by rk1

OR σ is produced from σj2 by rk2

...

OR σ is produced from σju by rku

In the theory of fuzzy control the �connective� OR is naturally inter-
preted by a t-conorm, which generalizes the disjunctive character of classical
Boolean disjunction in de�nition by cases. The t-norm used to combine the
membership of σj with the membership of rk generalizes the crisp concept
of σj AND rk belonging to the same membrane. Then it is worth examining
the possible connections between our description of membrane systems with
vague boundaries with the theory of t-norm based fuzzy control.

4 Discussion and future work

Here we collect some ideas for further discussion and future developments of
our preliminary proposal:

1. Here we have considered P systems with vague boundaries where only
string-objects are present inside the membrane structure. The use of
structured objects takes inspiration from the biology of the cell, where
long molecules (for instance, proteins) can live across the phospholi-
pidic bilayer of membranes, thus having a part inside and another part
outside the organelle delimited by that membrane. What about the
natural extension of P systems with vague boundaries to the case of
multisets of symbol-objects?

2. In a cell, many transmembrane proteins act as channels or gates for the
(selective) passage of biochemical substances. In [1] the functioning of
sodium-potassium exchange pump is modelled within the framework of
P systems, and the notion of bilayer is de�ned in order to have a real-
istic description of the cellular process. Hence, it would be interesting
to introduce the same notion of bilayer also in P systems with vague
boundaries, and to de�ne the membership values of objects and rules
not only for all membranes but also for their corresponding bilayer.

3. It could be interesting to adapt our de�nition of membranes with vague
boundaries to describe hierarchical systems where the notion of sphere
of in�uence plays a key role. In this setting, the concepts of distribu-
tions of objects and their topological or metrical relationships could
be modeled by adding structure, in the form of logical or analytical
constraints, to our basic description.
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