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The content of a membrane in a configuration of an ‘exact’ P system is described by a
multiset. Recall that a (crisp) multiset over a set of types X is simply a mapping d : X → N.
The usual interpretation of a multiset d : X → N is that it describes a set consisting of d(x)
“exact” copies of each type x ∈ X. In particular, it is assumed that the set described by the
multiset does not contain any element that is not a copy of some x ∈ X, or rather that we
do not care about these elements, and that an element of it cannot be a copy of two different
types.

Now, the uncertainty in an ‘inexact’ P system may arise at the level of the (lack of) crispness
of its membranes’ contents, and this can be represented using fuzzy multisets of different kinds.
For instance, we could understand that the objects are imperfect, approximate copies of the
reactives purportedly involved in its reactions. This would lead us to multisets describing, for
every reactive v and for every degree of approximation t, how many elements there are in the
membrane that are approximate copies of v with (or within) degree of approximation t. We
could also understand that our lack of knowledge of the system refers to the number of copies
of the (now, exact) reactives in each membrane. This would lead us to multisets describing, for
every reactive v and for every n ∈ N, the degree of certainty of there being n copies of v in the
membrane. And so on.

Even using these generalized kinds of multisets, the basic processes of P systems based on
them would be still removing, creating and moving objects within the system, and the final
result of a computation would be still obtained by counting (in some way) the objects in some
membrane. This calls for the development and study of cardinalities to ‘count’ the kind of
fuzzy multisets used in this context.

We consider here two types of cardinalities: scalar, assigning to each multiset a positive
real number, and fuzzy, assigning to each multiset a fuzzy natural number, a fuzzy subset
of N with certain properties. Both may have their interest in different types of P systems.
Fuzzy membrane systems with scalar cardinalities would produce computable (in the membrane
sense) subsets of R

+, while fuzzy membrane systems using fuzzy cardinalities would produce
computable sets of fuzzy natural numbers.
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The results on scalar and crisp cardinalities of fuzzy multisets of the first type discussed
above (fuzzy multisets of approximate copies) contained in Sections 4 and 6 of this note were
proved in [3]. The rest of this note is devoted to discuss work currently in progress. Previous
studies of fuzzy cardinalities of fuzzy multisets include [1, 2, 4, 5]

1 Fuzzy natural numbers

A generalized natural number is a mapping ν : N → [0, 1]; the set of generalized natural numbers
is, then, [0, 1]N. The support of a generalized natural number ν : N → [0, 1] is the set

Supp(ν) = {n ∈ N | ν(n) > 0}.

We can include N into [0, 1]N in several ways. For instance:

• By associating to every n ∈ N the generalized natural number n : N → [0, 1] defined by
n(n) = 1 and n(m) = 0 for every m 6= n.

• By associating to every n ∈ N the generalized natural number n̂ : N → [0, 1] defined by
n̂(m) = 1 if m 6 n and n̂(m) = 0 if m > n.

• By associating to every n ∈ N the generalized natural number ñ : N → [0, 1] defined by
ñ(m) = 0 if m < n and ñ(m) = 1 if m > n.

Notice that 0 = 0̂ 6= 0̃ and that n = n̂ ∧ ñ.
It has been agreed that the ‘sum’ of generalized natural numbers corresponds to the following

operation ⊕ on [0, 1]N, called the extended sum: for every ν, µ ∈ [0, 1]N,

(ν ⊕ µ)(k) =
∨

{ν(i) ∧ µ(j) | i + j = k} for every k ∈ N.

This extended sum of generalized natural numbers is associative, commutative, its neutral
element is 0, and it extends the sum of natural numbers for each one of the embeddings described
above. Moreover, the extended sum of two increasing (resp., decreasing) generalized natural
numbers is again increasing (resp., decreasing).

We shall not use all generalized natural numbers but a certain subset of them.
A generalized natural number is convex when ν(k) > ν(i) ∧ ν(j) for every i 6 k 6 j. By a

fuzzy natural number we shall understand a convex generalized natural number.
We shall say that a fuzzy natural number has a summit when it takes its greatest value in,

and only in, an element n0 ∈ N, and that it has a plateau when it takes its greatest value in, and
only in, all elements of an interval {n0, n0 + 1, . . . , n0 + k} ⊆ N. Every fuzzy natural number
has a summit or a plateau, and it increases to the left of it and decreases to the right of it.

Every increasing or decreasing generalized natural number is convex, and the extended sum
of two convex generalized natural numbers is again convex.

It would also be natural to impose the finiteness of the support of fuzzy natural numbers,
which would entail that at some distance to the left and, specially, to the right of the summit
of the generalized natural number, it is defined 0. We shall not do it here (mainly because the
generalized natural numbers ñ do not have a finite support), although in some contexts this
restriction appears in a natural way: see Section 4.
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The extended sum of two fuzzy natural numbers (resp., with finite support) is again a fuzzy
natural number (resp., with finite support).

We shall denote by N the set of all fuzzy natural numbers. The embeddings N ↪→ [0, 1]N

described above are embeddings N ↪→ N.
We shall use fuzzy natural numbers as models of ‘imprecisely known’ natural numbers, taking

as ‘exact natural numbers’ the images of one of these embeddings N ↪→ N. So, for instance,
our knowledge of a quantity that lies ‘around 5’ will be represented by a fuzzy natural number
with a summit in 5, or a plateau around 5.

2 Fuzzy multisets of uncertain quantities

As we mentioned in the introduction, a natural definition of fuzzy multiset assigns to each
element of a set of types an imprecisely known natural number. Since we are advocating here
for the use of fuzzy natural numbers (actually, of some suitable subset of them; see the next
section) as models of the latter, this leads us to the following definition.

Definition 1 A fuzzy multiset of uncertain quantities, a uq-fuzzy multiset for short, over a
set of types X is a mapping F : X → N. Such a uq-fuzzy multiset is finite if its support

Supp(F ) = {x ∈ X | F (x) 6= 0}

is a finite subset of X.

For every uq-fuzzy multisets F,G over a set X, their sum is the uq-fuzzy multiset A + B
defined pointwise by

(A + B)(x) = A(x) ⊕ B(x), for every x ∈ X.

A scalar cardinality of uq-multisets would measure their size by means of positive real num-
bers, assigning moreover to each crisp multiset its usual cardinal. Such a scalar cardinality
could be obtained by taking any morphism of monoids

α : N → R
+

that preserves the chosen embedding N ↪→ N, and then defining

Scα(F ) =
∑

x∈Supp(F )

α(F (x)).

Actually, if we define abstractly a scalar cardinality of uq-fuzzy multisets as a mapping that
sends every uq-fuzzy multiset to a positive real number, preserves the sums and extends the
usual cardinality of crisp multisets, then it is not difficult to prove that all such scalar cardi-
nalities are obtained in this way.

Anyway, the natural definition of the cardinal C of a finite uq-fuzzy multiset F over a set of
types X assigns to each one of them a fuzzy natural number:

C(F ) =
⊕

x∈Supp(F )

F (x) ∈ N.
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This also extends the usual cardinality of crisp multisets.2

The main problem with uq-fuzzy multisets comes from a handicap of fuzzy natural numbers.
In membrane processes, we must be able to compare and to subtract multisets. Now, the
natural definition of F 6 G for two uq-fuzzy multisets F and G should be

F (x) 6 G(x) in N, for every x ∈ X,

And when F 6 G, the natural definition of their difference G − F should be

(G − F )(x) = G(x) − F (x) in N, for every x ∈ X.

But, what are these order and subtraction in N?

3 Subtracting fuzzy natural numbers

As we see, the use of fuzzy natural numbers to describe our imprecise knowledge of the number
of reactives in a membrane at a given moment of a process poses two problems: comparison
and subtraction. Given two fuzzy natural numbers µ and ν, if µ is larger than ν, how can we
subtract ν from µ, finding a fuzzy natural number µ − ν such that

ν ⊕ (µ − ν) = µ?

Would it be uniquely determined?
And, actually, to begin with, what does ‘larger’ mean in N? There are some proposals in this

connection [7]. All of them translate in some sense the intuitive idea that if ν 6 µ, then the
‘increasing’ and the ‘decreasing’ branches of ν should lie to the left of those of µ, respectively.
But they do not yield a well-defined subtraction.

Then, if we want (and we want!) to describe uncertainly known quantities of reactives in a
membrane as fuzzy natural numbers, we need to know how to subtract them.

First of all, notice that if the rules in the membrane system remove crisp quantities of reac-
tives, then we only need to compare natural numbers, embedded in N as we had decided to do
it, with fuzzy natural numbers, and to subtract a natural number from a fuzzy natural number.
Let’s take a glance at the embeddings given a the beginning.

• Assume that we take the embedding n 7→ n. For every ν ∈ N and n ∈ N, and for every
m ∈ N, we have that, if ν − n is defined, then, for every i = 0, . . . ,m,

(ν − n)(i) ∧ n(m − i) =

{
0 if m − i 6= n, i.e., if i 6= m − n
(ν − n)(i) if m − i = n, i.e., if i = m − n

which implies that

∨

i=0,...,m

(ν − n)(i) ∧ n(m − i) =

{
0 if m < n
(ν − n)(m − n) if n 6 m

In particular, if it has to be ν(m), we have that ν(m) = 0 for every m < n. This leads us
to the following definition-result:

2It is not difficult to define abstractly fuzzy cardinality of uq-fuzzy multisets and to characterize them as we

do it for the fuzzy cardinalities of another type of fuzzy multisets in Section 6. We shall not do it here.
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Proposition 1 For every ν ∈ N and n ∈ N, we define that

n 6 ν if and only if ν(m) = 0 for every m < n.

And if n 6 ν, then we define ν − n ∈ N by (ν − n)(i) = ν(n + i) for every i ∈ N.

With these definitions, if n 6 ν, then the fuzzy natural number ν −n is the only one such
that n ⊕ (ν − n) = ν.

• Assume now that we take the embedding n 7→ n̂. In this case more involved discussion
proves the following result.

Proposition 2 For every ν ∈ N and n > 1, there exists some ν − ñ ∈ N such that
ñ ⊕ (ν − ñ) = ν if and only if ν has a plateau of at least n + 1 elements.

And when ν has such a plateau {n0, . . . , n0 + k0}, then taking (ν − ñ)(i) = ν(i) for every
i < n0 + k0 and (ν − ñ)(i) = ν(i + n) for every i > n0 + k0 we obtain a fuzzy natural
number such that n̂ ⊕ (ν − n̂) = ν, but not all of them.

Thus, we can define

n̂ 6 ν if and only if ν has a plateau of at least n + 1 elements,

and the subtraction ν − n̂ as in the last proposition.

Since the fuzzy natural numbers n̂ are decreasing, it is natural to use them when we
only consider decreasing fuzzy natural numbers. For decreasing fuzzy numbers, the order
defined above becomes

n̂ 6 ν if and only if ν(0) = · · · = ν(n)

and then, when n̂ 6 ν, taking ν− n̂ defined by (ν− n̂)(i) = ν(i+n) for every i ∈ N, yields
a solution of n̂ ⊕ (ν − n̂) = ν.

• A similar situation happens with the embeddings n 7→ ñ. We leave the details to the
reader.

In the general situation, if we want to remove uncertain quantities of reactives from a mem-
brane where we have other uncertain quantities of reactives, we need to give some answer to
the following question.

Open question. To identify a meaningful and general enough subset N
′
of N where

a meaningful (possibly partial) order 6 can be defined in such a way that, for every
µ, ν belonging to this subset, if ν 6 µ, then there exists one distinguished element

µ− ν such that ν ⊕ (µ− ν) = µ. Moreover, N should be embedded into N
′
in some

way.

This would mean, of course, that we would allow the “uncertain quantities of reactives” to

lie only in N
′
, i.e., to define uq-fuzzy multisets as mappings X → N

′
.
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For instance, if we restrict ourselves to decreasing fuzzy natural numbers, then the solution
of the general problem is the following. We define

ν 6 µ if and only if |ν−1(t)| 6 |µ−1(t)|, for every t ∈]0, 1],

and then, a subtraction satisfying the desired property can be defined as follows: if ν 6 µ in
this sense, then we consider the mapping H(µ, ν) :]0, 1] → N defined by

H(µ, ν)(t) = |µ−1(t)| − |ν−1(t)| for every t ∈]0, 1],

and then
(µ − ν)(n) =

∨
{t ∈ [0, 1] |

∑

t′>t

H(µ, ν)(t′) > n}.

This is a decreasing fuzzy natural number such that µ ⊕ (ν − µ) = ν, but it is the only one.
These order and subtraction were first described by A. ObtuÃlowicz in [6], and can be obtained

as a slight modification of a particular case of a general construction that we shall discuss in
Section 5.

If ν = n̂, for some n, then, with this order, n̂ 6 µ if and only if µ(0) = · · · = µ(n) = 1, and
then the subtraction agrees with the one described above in the particular case of subtracting
n̂ from decreasing fuzzy natural numbers.

If we restrict ourselves to increasing fuzzy natural numbers, then our problem also has a
solution. The order and the corresponding subtraction can be obtained again as a particular
case of the aforementioned general construction we shall give later.

In general, in Section 5 we shall show a method to produce families of fuzzy natural numbers
where an order and a subtraction can be defined. We do not know whether some of them is
natural enough to be used in practice: perhaps a nice subfamily of one of them will work. The
interesting fact is that our families arise as another type of fuzzy cardinalities of multisets.

4 Fuzzy cardinalities of finite multisets on ]0, 1].

A (crisp) multiset over ]0, 1] is a mapping A :]0, 1] → N. A multiset A over ]0, 1] is finite if its
support

Supp(A) = {t ∈]0, 1] | A(t) > 0}

is a finite subset of ]0, 1]. We shall denote the set of all finite multisets over ]0, 1] by FMS(]0, 1]),
and by ⊥ the null multiset, defined by ⊥(t) = 0 for every t ∈]0, 1].

For every A,B ∈ FMS(]0, 1]), their sum A + B is the multiset

(A + B)(t) = A(t) + B(t), for every t ∈]0, 1].

We shall denote by n/t the multiset sending t to n and every t′ 6= t to 0.
A fuzzy cardinality of a finite multiset A over ]0, 1] is a fuzzy natural number that measures

how many elements has A.

Definition 2 A fuzzy cardinality on FMS(]0, 1]) is a mapping C : FMS(]0, 1]) → N that
satisfies the following conditions:

(i) For every A,B ∈ FMS(]0, 1]), C(A + B) = C(A) ⊕ C(B).
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(ii) For every A,B ∈ FMS(]0, 1]) and for every i, j ∈ N such that i >
∑

t∈Supp(A)(A) and

j >
∑

t∈Supp(A)(B), C(A)(i) = C(B)(j).

(iii) If Supp(A) ⊆ {1}, then C(A)(i) ∈ {0, 1} for every i ∈ N and, moreover, if n = A(1), then
C(A)(n) = 1.

(iv) If t, t′ ∈]0, 1] are such that t 6 t′, then

C(1/t)(0) > C(1/t′)(0) and C(⊥)(1) 6 C(1/t)(1) 6 C(1/t′)(1).

Let us explain the meaning as well as some motivations for each one of these conditions:

• Condition (i), additivity, generalizes to fuzzy natural numbers the additivity of the clas-
sical cardinal of a crisp multiset.

• Condition (ii) implements the idea that the elements t not belonging to the support of a
finite multiset A should not affect the cardinality of A.

• Condition (iii) requires that, on each multiset of the form n/1, with n ∈ N, any fuzzy
cardinality must take values only in {0, 1}, and the value 1 on the specific number n. If
in this property we restrict the type of cardinalities we accept for n/1, then the overall
set of cardinalities is restricted.

• Condition (iv) captures the restriction that the value of the cardinality of singletons on 0
must decrease and their value on 1 must increase with the element of their support.

The bracket fuzzy cardinality defined in the next example will play a key role henceforth.

Example 3 Let us consider the function

[ ] : FMS(]0, 1]) → [0, 1]N

A 7→ [A]

where, for every A ∈ FMS(]0, 1]),

[A] : N → [0, 1]
i 7→ [A]i

is defined by

[A]i =
∨

{t ∈ [0, 1] |
∑

t′>t

A(t′) > i}.

It is clear that [A] is decreasing and that [A]i = 0 for every i >
∑

t∈Supp(A)(A), and hence

[A] ∈ N for every A ∈ FMS(]0, 1]). It turns out that this mapping A 7→ [A] is a fuzzy
cardinality on FMS(]0, 1]), which we shall call the bracket cardinality.

Definition 3 Let f : [0, 1] → [0, 1] be an increasing mapping such that f(0) ∈ {0, 1} and
f(1) = 1 and let g : [0, 1] → [0, 1] be a decreasing mapping such that g(0) = 1 and g(1) ∈ {0, 1}.

Let Cf,g : FMS(]0, 1]) → N be the mapping defined as follows: for every A ∈ FMS(]0, 1])
and i ∈ N,

Cf,g(A)(i) = f([A]i) ∧ g([A]i+1).

7



The key theorem in this section is the following.

Theorem 4 A mapping C : FMS(]0, 1]) → N is a fuzzy cardinality if and only if C = Cf,g

for some increasing mapping f : [0, 1] → [0, 1] such that f(0) ∈ {0, 1} and f(1) = 1 and some
decreasing mapping g : [0, 1] → [0, 1] such that g(0) = 1 and g(1) ∈ {0, 1}.

The last theorem allows us to call the mapping Cf,g, for every f, g as in Definition 3, the fuzzy
cardinality generated by f and g. It provides an explicit description of all fuzzy cardinalities in
terms of the bracket cardinality.

Proposition 5 Cf,g(A) is increasing for every A ∈ FMS(]0, 1]) if and only if f is the constant
mapping 1, in which case Cf,g(A)(k) = g([A]k+1) for every A ∈ FMS(]0, 1]) and k ∈ N.

Proposition 6 Cf,g(A) is decreasing for every A ∈ FMS(]0, 1]) if and only if g is the constant
mapping 1, in which case Cf,g(A)(k) = f([A]k) for every A ∈ FMS(]0, 1]) and k ∈ N.

Since, for every f, g as in Definition 3 and, for every A ∈ FMS(]0, 1]) and k ∈ N,

Cf,g(A)(k) = f([A]k) ∧ g([A]k+1),

we deduce the following result.

Corollary 7 Every fuzzy cardinality on FMS(]0, 1]) is the meet of an increasing fuzzy cardi-
nality and a decreasing fuzzy cardinality: namely Cf,g = Cf,1 ∧ C1,g.

The equality in the last statement and the fact that, for every A, Cf,1(A) is decreasing and
C1,g(A) is increasing, easily entail that, in the non-trivial cases when neither f nor g are the
constant mapping 1, there exists an n0 ∈ N such that

Cf,g(A)(i) =

{
C1,g(A)(i) if i < n0

Cf,1(A)(i) if i > n0

These give the increasing and decreasing branches of Cf,g(A).

5 Subtracting fuzzy natural numbers revisited

Let 6 denote the partial order on FMS(]0, 1]) defined pointwise by

A 6 B if and only if A(t) 6 B(t) for every t ∈]0, 1].

If A 6 B, then their difference B − A is the multiset defined pointwise by

(B − A)(t) = B(t) − A(t) for every t ∈]0, 1].

Proposition 8 Let C be a fuzzy cardinality on FMS(]0, 1]). If A,B ∈ FMS(]0, 1]) are such
that A 6 B, then

C(A) ⊕ C(B − A) = C(B).
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This makes us return to the open question that we posed in Section 3. In view of Proposition
8, a possible answer to it would be to take, for any fuzzy cardinality C on FMS(]0, 1]),

NC = {C(A) ∈ N | A ∈ FMS(]0, 1])},

to define on this set the partial order

ν 4 µ if and only if there exist A,B ∈ FMS(]0, 1]) such that ν = C(A), µ = C(B)
and A 6 B,

and then to define, for every A,B ∈ FMS(]0, 1]) such that A 6 B,

C(B) − C(A) = C(B − A).

This poses, of course, several technical questions. Is 4 a wel-defined partial order? Is the
subtraction in NC well-defined, in the sense that if A,A′, B,B′ ∈ FMS(]0, 1]) are such that
C(A) = C(A′), C(B) = C(B′), A 6 B, and A′ 6 B′, does it always happen that

C(B′ − A′) = C(B − A)?

We conjecture that the answer is in general positive, but we have not been able to prove it.
Anyway, we have the following result.

Proposition 9 Let f, g be mappings as in Definition 3. If f and g are injective, then, for
every A,B ∈ FMS(]0, 1]), if Cf,g(A) = Cf,g(B), then A = B.

Thus, if we restrict the set of cardinalities to those generated by bijective mappings f and g,
then the answers are indeed positive (although we still do not know whether C(B − A) is the
only fuzzy natural number whose extended sum with C(A) yields C(B)).

The third question is the characterization of the sets NC . In this connection, we have the
following results.

Proposition 10 For every ν ∈ N there always exist injective mappings f, g as in Definition 3
such that ν ∈ NCf,g

. But, given µ, ν ∈ N, there need not exist a fuzzy cardinality C such that

µ, ν ∈ NC.

Theorem 11 Let f, g be two bijective mappings as in Definition 3, and let t0 ∈ [0, 1] be the
only point where they cross, i.e., such that f−1(t0) = g−1(t0).

For every ν ∈ N, we have that ν ∈ NCf,g
if and only if one of the following two conditions

holds:

(a) ν(n) 6 t0 for every n ∈ N, and ν has a plateau.

(b) There is only one point n0 such that ν(n0) > t0, and then the values of ν(n0 − 1), ν(n0)
and ν(n0 +1) are linked through some specific conditions (namely, there exist t1 < t0 < t2
such that ν(n0 − 1) = g(t2), ν(n0 + 1) = f(t1) and ν(n0) = f(t2) ∧ g(t1)).

Besides cardinalities Cf,g generated by bijective mappings, we could also take C to be the
bracket cardinality, or the increasing cardinality A 7→ 1 − [A]i+1. The first one yields all
decreasing fuzzy multisets µ with finite support and µ(0) = 1, while the second one yields all
increasing fuzzy multisets with finite support. In this cases, the subtraction is also well defined
through the construction provided above.
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6 Fuzzy multisets of approximate copies

Let us consider now fuzzy multisets describing sets containing approximate copies of the types.
In a first approach, by such a fuzzy multiset over a set of types X we would understand a
mapping A : X × [0, 1] → N. Such a fuzzy multiset would be understood to describe a set
consisting of, for each x ∈ X and for every t ∈ [0, 1], A(x, t) copies of x with degree of similarity
t to it.

We shall impose two restrictions on this interpretation of a fuzzy multiset. First, the set
described by the fuzzy multiset does not contain any element that is not a copy of some x ∈ X
with some non-negative degree of similarity —or rather, we do not care about them. This is
a natural condition. Second, we assume that if an element of the set is an inexact copy of x
with degree of similarity t > 0, then it cannot be an inexact copy of any other type in X with
a non-negative degree of similarity. This is a strong condition, and we shall return on it at the
end of this section. These two conditions entail that, for every x ∈ X, the value A(x, 0) must
be equal to

∑
w∈X−{0}

∑
t>0 A(w, t) and in particular that the restriction of A to X × {0} is

determined by the restriction of A to X×]0, 1]. This leads us finally to the following definition.

Definition 4 A fuzzy multiset of approximate copies, an ac-fuzzy multiset for short, over a
set X is a mapping A : X×]0, 1] → N,, i.e., a mapping

A : X × MS(]0, 1]).

Such an ac-fuzzy multiset is finite if its support

Supp(A) = {x ∈ X | A(x) 6= ⊥}

is a finite subset of X and, for every x ∈ Supp(A), A(x) ∈ FMS(]0, 1]).

We shall denote the sets of all ac-fuzzy multisets and of all finite fuzzy multisets over X by
FMS(X) and FFMS(X), respectively.

Given two ac-fuzzy multisets A,B over X, their sum A + B is the ac-fuzzy multiset over X
defined pointwise by

(A + B)(x) = A(x) + B(x) for every x ∈ X.

For every x ∈ X and A ∈ MS(]0, 1]), we shall denote by A/x the fuzzy multiset over X
defined by (A/x)(x) = A and (A/x)(y) = ⊥ for every y 6= x. Notice that if A is finite, then
A/x is also finite, and that, for every A ∈ FFMS(X),

A =
∑

x∈Supp(A)

(A(x))/x.

The partial order 6 on FMS(X) is defined by

A 6 B if and only if A(x) 6 B(x) for every x ∈ X.

If A 6 B, then their difference B − A is the fuzzy multiset defined pointwise by

(B − A)(x) = B(x) − A(x) for every x ∈ X.

The scalar cardinality of a finite fuzzy multiset A is a real number that measures the overall
size of the set described by A.
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Definition 5 A scalar cardinality on FFMS(X) is a mapping Sc : FFMS(X) → R
+ that

satisfies the following conditions:

(i) Sc(A + B) = Sc(A) + Sc(B) for every A,B ∈ FFMS(X).

(ii) Sc((1/1)/x) = 1 for every x ∈ X.

A scalar cardinality Sc on FFMS(X) is homogeneous when it satisfies the following extra
property:

(iii) Sc(M/x) = Sc(M/y) for every x, y ∈ X and M ∈ FMS(]0, 1]).

Next proposition provides a description of all scalar cardinalities on FFMS(X).

Proposition 12 A mapping Sc : FFMS(X) → R
+ is a scalar cardinality if and only if for

every x ∈ X there exists a mapping fx :]0, 1] → R
+ with fx(1) = 1, such that, for every fuzzy

multiset A over X,

Sc(A) =
∑

x∈X

∑

t∈Supp(A(x))

fx(t)A(x)(t).

Moreover, the mappings (fx)x∈X are uniquely determined by Sc, and Sc is homogeneous if and
only if fx = fy for every x, y ∈ X.

Now, a fuzzy cardinality of a fuzzy multiset measures the size of the set it describes by means
of a fuzzy natural number.

Definition 6 A fuzzy cardinality on FFMS(X) is a mapping C : FFMS(X) → N that
satisfies the following conditions:

(i) For every A,B ∈ FFMS(X), C(A + B) = C(A) ⊕ C(B).

(ii) For every x ∈ X, the mapping

C( /x) : FMS(]0, 1]) → N

M 7→ C(M/x)

is a fuzzy cardinality on FM(]0, 1])

A fuzzy cardinality is homogeneous when it satisfies the following further condition:

(iii) For every x, y ∈ X, C( /x) = C( /y).

Proposition 13 A mapping C : FFMS(X) → N is a fuzzy cardinality if and only if for every
x ∈ X there exists an fuzzy cardinality Cx : FMS(]0, 1]) → N such that

C(M) =
⊕

x∈X

Cx(M(x)).

Moreover, the family (Cx)x∈X is uniquely determined by C, and C is homogeneous if and only
if Cx = Cy for every x, y ∈ X.
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Thus, homogeneous scalar and fuzzy cardinalities understand fuzzy multisets as a sum of
crisp multisets, one on every type x ∈ X, and “count” this sum. Arbitrary scalar and fuzzy
cardinalities “count” each multiset on each x ∈ X, possibly using a different cardinality for
every x ∈ X, and then add up these results.

Adding a fuzzy multiset to a fuzzy multiset corresponds to the extended sum of their car-
dinalities. As far a removing a fuzzy multiset from another fuzzy multiset, we still have the
following result.

Corollary 14 Let C be a fuzzy cardinality on FFMS(X). If A,B ∈ FFMS(X) are such that
A 6 B, then

C(A) ⊕ C(B − A) = C(B).

Therefore, the fuzzy cardinal of B −A can be seen as the subtraction of the cardinal of A to
that of B. Notice anyway that now we are subtracting fuzzy multisets, and the subtraction of
cardinals is a consequence of this operation.

We should remove our working hypothesis that an object can only be similar to only one
reactive in order to cover more general situations, where objects can be similar to different
reactives or even where reactives can be similar themselves. This would affect our constructions
in two ways. The first one is that the values of a fuzzy multiset over a set X on elements of the
form (x, 0) would no longer be entailed by the rest of values, and thus multisets would have to
be defined as mappings

F : X → MS([0, 1]).

This is conceptually easy, although technically involved, to cope with.
But if we remove this hypothesis, then the order for fuzzy multisets and their subtractions

become something darker. It is not the same to have an object similar to x and to y than two
objects, one similar to x and the other similar to y: in the first case, when we remove one single
object we get the null multiset, in the second case, not.

Our results on cardinalities of ac-fuzzy multisets deal with abstract objects and therefore
they are formally correct in this new setting, but they are not sound. For instance, Proposition
14 is a direct consequence of additivity, but it should not held in this setting. Thus, cardinals
of these fuzzy multisets would have to be handled in a completely different way, and uncertain
P systems with membranes’ contents described by these multisets would be more difficult to
define.
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[3] J. Casasnovas, F. Rosselló, Scalar and fuzzy cardinalities of crisp and fuzzy multisets. Sub-
mitted (2004).

[4] M. Delgado, D. Sanchez, M. J. Mart́ın-Bautista, M.A. Vila, A probabilistic definition of a
nonconvex fuzzy cardinality. Fuzzy Sets and Systems 126 (2002) 177–190.

12



[5] Delgado M. et al, On a Characterization of Fuzzy Bags. Proceedings IFSA2003, 119–126.

[6] A. ObtuÃlowicz, General multi-fuzzy sets and fuzzy membrane systems. Pre-proceedings of
the WMC 2004.

[7] M. Wygralak, Vaguely defined objects, Representations, fuzzy sets and nonclassical cardi-

nality theory. Kluwer Academic Press (1996).

13


