An approximate algorithm for NP-complete optimization problems

exploiting P-systems

Taishin Y. Nishida*
Faculty of Engineering
Toyama Prefectural University
Kosugi-machi, 939-0398 Toyama, Japan

Abstract

A new approximate algorithm for optimization problems, called membrane algorithm,
are proposed, which is an application of G. Paun’s membrane computing or P-system.
Membrane algorithm consists of several membrane separated regions and a subalgorithm
and a few tentative solutions of the optimization problem to be solved in every region.
Subalgorithms improve tentative solutions problem simultaneously. Then the best and
worst solutions in a region are sent to adjacent inner and outer regions, respectively.
By repeating this process, a good solution will appear in the innermost region. The
algorithm terminates if a terminate condition is satisfied. A simple terminate condition
is the number of iterations, while a little sophisticated condition becomes true if the good
solution is not changed during a predetermined period. Computer experiments show
that the algorithm solves the traveling salesman problem as good as simulated annealing
algorithm.

Key words: approximate algorithm, traveling salesman problem, P-system

1 Introduction

Studies on approximate algorithms for NP-complete problems are a very important issue in
computer science because ([1, 2, 6]):

e There are thousands of NP-complete problems.
e Almost all NP-complete problems correspond to practical problems.

e There are very few (I think no) expectations for P = NP, or strictly solving NP-complete
problems in polynomial time.

We suggest a new approximate algorithm for solving NP complete optimization problems.
The algorithm uses P-system paradigm [4]. Then it is called membrane algorithm. Membrane
algorithm borrows nested membrane structures, rules in membrane separated regions, and

*email: nishida@pu-toyama.ac.jp

transporting mechanisms through membranes from P-systems. Membrane algorithm remakes
these components to solve NP-complete optimization problems approximately.

In the next section, the outline of membrane algorithm is explained. Details membrane
algorithm are defined in order to solve the traveling salesman problem approximately in
Section 3. The section also describes results of computer experiments under the definitions.
An advanced membrane algorithm is mentioned in Section 4.

2 The outline of membrane algorithm

Outermost region

innermost region

Figure 1: Membrane structure of the suggested algorithm.

Here we explain the new algorithm, called membrane algorithm. Membrane algorithm
consists of three different kinds of components:

1. A number of regions which are separated by nested membranes (Figure. 1).

2. For every region, a subalgorithm and a few tentative solutions of the optimization
problem to be solved.

3. Solution transporting mechanisms between adjacent regions.
After initial settings, membrane algorithm works as follows:

1. For every region, the solutions are updated by the subalgorithm at the region, simul-
taneously.

2. In every region, the best and worst solutions, with respect to the optimization, are sent
to the adjacent inner and outer regions, respectively.

3. Membrane algorithm repeats updating and transporting solutions until a terminate
condition is satisfied. A simple terminate condition is the number of iterations, while
a little sophisticated condition becomes true if the good solution is not changed during
a predetermined period.

The best solution in the innermost region is the output of the algorithm.

Membrane algorithm can have a number of subalgorithms which are any approximate
algorithm for optimization problems, for example, genetic algorithm, tabu search, simulated
annealing, local search, and so forth. The algorithm is expected to be able to escape from local
minima by using a subalgorithm which likes random search at outer regions. On the other
hand, the algorithm can improve good solutions in the inner regions by a subalgorithm which
likes local search. So, assigning appropriate subalgorithms for a given problem, performance
of the algorithm will be excellent.

Because the subalgorithms are separated by membranes and communications occur only
between adjacent regions, membrane algorithm will be easily implemented in parallel, dis-
tributed, or grid computing systems. This is the second superior point of the algorithm.

3 First experiment of membrane algorithm solving traveling
salesman problem

In this section we fix components of membrane algorithm to solve traveling salesman problem
(TSP for short). Then we implement and experiment the algorithm on a computer.

3.1 Details of the algorithm

Let m be the number of membranes and let region 0 be the innermost and region m — 1 be
the outermost regions, respectively.

An instance of TSP with n nodes contains n pairs of real numbers (z;,y;) (¢ =0,1,...,n—
1) which correspond to points in the two dimensional space. The distance between two nodes

v; = (24,y;) and v; = (x},y;) is the geometrical distance d(v;,v;) = \/(acz —)2 + (yi — y5)?.
A solution is a list of nodes (vg,v1,...,vp—1). The value of a solution v = (vg, v1,...,Vp—1)
denoted by W (v) is given by

n—2

W(v) = Z d(vi,vit1) + d(vp—1,v0).
=0

For two solutions v and v, v is better than w if W (v) < W(u). The solution which has the
minimum value in all possible solutions is said to be the strict solution of the instance. A
solution which has a value close to the strict solution is called an approximate solution.

The algorithm has one tentative solution in region 0 and two solutions in regions 1 to
m — 1.

We use a tabu search as the subalgorithm in the innermost region, region 0. Tabu search
searches a neighbour of the tentative solution by exchanging two nodes in the solution. In
order to avoid appearing the same solution twice, tabu search has a tabulist which consists of
nodes already exchanged. Nodes in the tabulist are not exchanged again. Tabu search resets
the tentative solution and the tabulist if one of the three conditions occurs:

1. The value of the neighbouring solution is less than that of the tentative solution. The
neighbouring solution becomes the tentative solution.

2. The value of the best solution in the region 1 is less than that of the tentative solution.
The best solution in the region 1 becomes the new tentative solution.

3. Neighbour search exceeds a predetermined turns (in this case %). The tentative solution
remains. Only tabulist is reset.

In case 3, no improvement occurs. But tabu search tries to search other neighbours, since
there are many unsearched neighbours.

The tentative solutions in regions 1 to m — 1 (there are two solutions in each region) are
improved by a subalgorithm summerized below:

1. If the two solutions have the same value, then a part of one solution (which is selected
probabilisticly) is reversed.

2. Recombinates the two solutions and makes two new solutions.

3. Modifies the two new solutions by point mutations. In the i-th region, a mutation
occurs under probability .

Obviously the subalgorithm described above resembles genetic algorithms. But the subalgo-
rithm always recombinates the two solutions in a region while genetic algorithms randomly
select solutions to be recombinated. If the two solutions in a region are identical, recombi-
nation makes no new solutions. The step 1 avoids this case and introduces a new solution
using reverse operation, which is a kind of mutation.

The overall algorithm looks like:

1. Given an instance of TSP.

2. Randomly makes one tentative solution for region 0 and two tentative solutions for
every region 1 to m — 1.

3. Repeats 3.1 to 3.3 for d times (d is given as a parameter).
3.1 Modify tentative solutions simultaneously in every region using the subalgorithm

at the region.

3.2 For every region i (1 <17 < m — 2), sends the best solution of the solutions in the
region (old solutions and modified solutions) to region 7 — 1 and the worst solution
to region 7 + 1. (In region 0, sends the worst solution to region 1 and in region
m — 1, sends the best solution to region m — 2.)

3.3 For every region 1 to m — 1 erases solutions but the best two.
4. Outputs the tentative solution in region 0 as the output of the algorithm.

In the above algorithm, steps 3.2 and 3.3 correspond to solution transporting mechanisms
between adjacent regions.

Table 1: Results of membrane algorithm and a simulated annealing (SA) for the benchmark
problem eil51 (51 nodes). Membrane algorithm repeat step 3 40000 times. The number of
trials of membrane algorithm is 10. Membrane 2, 10, 30, and 50 stand for the algorithms

with 2, 10, 30, and 50 regions, respectively.

Algorithm | Membrane 2 | Membrane 10 | Membrane 30 | Membrane 50 | SA
Best 440 437 433 429 430
Average 544 450 442 435 438
Worst 786 457 450 444 445

Table 2: Results for benchmark problem kroA100 (100 nodes). 100000 iterations and 10

trials.
Algorithm | Membrane 2 | Membrane 10 | Membrane 30 | Membrane 50 | SA
Best 24524 22319 21770 21651 21369
Average 32973 23422 23200 22590 21763
Worst 49667 24862 23940 24531 22564

3.2 Computer experiments

We have implemented the algorithm using Java programming language. By using Java, mod-
ifications of the algorithm have been easily tested on a computer. For example, we have
implemented several recombination methods and have found that edge exchange recombina-
tion (EXX) [3] exhibits the best performance.

Tables 1 and 2 show results of the program for TSP benchmark problem eil51' and
kroA100? from TSPLIB [5]. Results of simulated annealing from [7] are also shown in the
tables.

Figure 2 shows changes of the average value of solutions for kroA100 problem solved
by membrane algorithm with 50 membranes. One can see that the algorithm converges to
considerable good solutions in a few steps, about 2000 to 3000 steps.

4 An improved membrane algorithm

In this section we discuss an improved membrane algorithm, called compound membrane
algorithm, which corresponds to a tissue P-system.

Compound membrane algorithm has two phases (Figure 3). In the first phase, a number
of membrane algorithms make good solutions from randomly generated initial solutions. The
good solutions, in turn, become the initial solutions of the second phase. And a better
solution is obtained.

!The value of the optimum solution is 426.
2The value of the optimum solution is 21282.

[T "tanoo %ooon 000 o000 Sonon k0000 70000 %0000 000

Figure 2: Changes of the average value of solutions for kroA100 problem solved by membrane
algorithm with 50 membranes.

We examine compound membrane algorithm with the following parameters:
e Number of membrane algorithms in the first phase is 100.
e All membrane algorithms have 50 membranes.

e FEach membrane algorithm in the first phase terminates if the best solution does not
improved during 500 iterations®.

e The membrane algorithm in the second phase terminates if the best solution does not
improved during 5000 iterations?.

Results of computer experiments of compound membrane algorithm are shown in Table
3. We can see that compound membrane algorithm always outputs almost strict solutions.

On a single processor, computation time of compound membrane algorithm, of course, is
much longer than that of simple membrane algorithm. But, because membrane algorithms in
the first phase work completely independent, compound membrane algorithm will easily be
implemented on distributed computing system and computation time will be twice as short
as that of simple membrane algorithm.

3These numbers are selected according to the feature that membrane algorithm converges fast (Figure 2).

First phase

-
-

/Amdom initial solutio&\

i Membrane

~

\ a good solution |
AN S

~

.

algorithm

_—

Second phase/

/

initial solutions

\ i /
\\a better solution /

@om initial soluti%

L Membrane \;

\

algorithm

\

Membrane
algorithm

/

\ngod solution /

Figure 3: Compound membrane algorithm.

Table 3: Results of compound membrane algorithm. Trials of compound and simple mem-

brane algorithms are 10.

eilbl kroA100
compound | membrane | SA | compound | membrane SA
50 50
best 429 429 | 430 21431 21651 | 21369
average 431 435 | 438 21616 22590 | 21763
worst 435 444 | 445 21816 24531 | 22564

5 Conclusion

We have proposed and implemented a new algorithm, called membrane algorithm, for solving
NP-complete optimization problems. Computer experiments have shown that membrane
algorithm gets as good approximate solutions for TSP as simulated annealing algorithm.
Convergence of membrane algorithm is fast. An improved membrane algorithm, compound
membrane algorithm, always gives almost strict solutions for TSP.

References

[1] C. A. Floudas and P. M. Pardalos (eds), Encyclopedia of Optimization (Kluwer, Dor-
drecht, 2001).

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, (Freeman, 1979).

3] K. Maekawa et. al., A solution of traveling salesman problem by genetic algorithm (in
Japanese), SICE, 31, 598-605, 1995.

[4] Gheorghe Paun, Computing with membrane, Journal of Computer and System Sciences,
61, 108-143, 2000.

[6] Gerhard Reinelt, TSPLIB, URL http://www.iwr.uni-heidelberg.de/
group/comopt /software/ TSPLIB95/

[6] Arto Salomaa, Computation and Automata, (Cambridge University Press, Cambridge,
1985).

[7] M. Yoneda, URL http://www.mikilab.doshisha.ac.jp/dia/research/
person/yoneda/research/2002_7_10/SA /07-sareslut.html

