
Brainstorming Workshop on
Uncertainty in Membrane

Computing

Proceedings

Palma de Mallorca, November 8-10, 2004

'

&

$

%

¾

½

»

¼

¶
µ

³
´'

&

$

%

¾
½

»
¼

¶
µ

³
¶́
µ

³
´

'
&

$
%

'
&

$
%'

&

$

%

º

¹

·

¸

º

¹

·

¸

c© del text: els autors
c© de la edició: Departament de Matemàtiques i Informàtica de la Universitat
de les Illes Balears
Edició: Departament de Matemàtiques i Informàtica. Universitat de les Illes
Balears. Campus Universitari. 07122 Palma de Mallorca

ISBN: 84–7632–897–4
DL: PM1650–2004

Brainstorming Workshop on
Uncertainty in Membrane Computing

Departament de Matemàtiques i Informàtica
Escola Universitària Politècnica
Universitat de les Illes Balears

Palma de Mallorca, November 8 – 10, 2004

Program Committee
Antonio di Nola
Georghe Păun
Adam ObtuÃlowicz
Mario Pérez-Jiménez
Francesc Rosselló

Organizing Committee
Ricardo Alberich
Jaume Casasnovas
Mercè Llabrés
José Miró-Juliá
Jairo Rocha
Francesc Rosselló

Preface

Since its very inception as a computational model mimicking the behavior
of cells, it was apparent the interest of including uncertainty and approximation
into membrane computing models. Recall Gheorge Păun’s words in his first list
of problems, dated October 2000:

Membrane Computing comes from biology and in biology and bio-
chemistry the processes are nondeterministic, the result is only ap-
proximately/probabilistically true. Up to now, only ‘crisp’ mathe-
matics was used in P systems area (the same is in a great extent true
also for DNA Computing). What about ‘approximate’ mathematical
approaches, using probabilities, fuzzy sets, or rough set theory? [...]
What about ‘approximate’ computing, whatever this can mean?

Several approaches to membrane computing under uncertainty have been
proposed lately, based indeed on probabilities, rough sets, and fuzzy sets, and the
topic seemed mature enough to motivate a meeting that would bring together
researchers from different groups interested in the specific problem of including
uncertainty into membrane computing.

The University of the Balearic Islands hosted the Brainstorming Workshop
on Uncertainty in Membrane Computing from November 8 to 10 2004 with
this aim. About 30 people coming from universities in Austria, England, Italy,
Japan, Poland, Romania, and Spain gathered for three days in an informal
atmosphere, similar to that of the annual Brainstorming Week on Membrane
Computing.

The first day was devoted to tutorials, and during the other two days some
participants presented their work in progress. This volume collects the written
versions of some of the tutorials and the presentations. It also includes a paper
by Solomon Marcus on uncertainty written specially for this volume, which we
warmly thank.

This workshop was sponsored by the Ministry of Science and Education of
Spain, the Department of Mathematics and Computer Science, and the Poly-
technic School of the UIB. These proceedings have been published by the De-
partment of Mathematics and Computer Science of the UIB.

Palma, November 2004

Contents

(Imprecise Topics about) Handling Imprecision in P Systems
Antonio Di Nola, Gheorghe Păun, Mario J. Pérez-Jiménez,
Francesc Rosselló . 1

Tutorials
Plasma membrane, compartmentation, transport, and imprecisions

Óscar Moya Mesa . 13
Introduction to Membrane Computing

Gheorghe Păun . 17
An Approach to Computational Complexity in Membrane Computing

Mario J. Pérez-Jiménez . 67

Contributions and work in progress reports
P systems with vague boundaries: the t-norm approach

Stefano Aguzzoli, Daniela Besozzi, Brunella Gerla, Corrado Manara 97
P systems under uncertainty: the case of transmembrane proteins

Stefano Aguzzoli, Ioan I. Ardelean, Daniela Besozzi, Brunella
Gerla, Corrado Manara . 107

Metabolic algorithms and signal transduction dynamical networks
Luca Bianco, Vincenzo Manca . 119

A fuzzy approach to membrane computing with approximate copies
Jaume Casasnovas, Manuel Moyà, Joe Miró, Francesc Rosselló . 121

Counting the contents of fuzzy membranes. . . and related problems
Jaume Casasnovas, Francesc Rosselló 129

Modelling Biological Processes in P Systems: Handling Imprecision
and Constructing New Models
Matteo Cavaliere . 143

Quantum Energy–based P Systems
Alberto Leporati, Dario Pescini, Claudio Zandron 145

A Typology of Imprecision
Solomon Marcus . 169

An approximate algorithm for NP-complete optimization problems ex-
ploiting P-systems
Taishin Y. Nishida . 185

Fuzzy P systems and fuzzy rule-based decisionmaking
Adam ObtuÃlowicz . 193

(Imprecise Topics about)

Handling Imprecision in P Systems

Antonio Di Nola1, Gheorghe Păun2,3,
Mario J. Pérez-Jiménez2, Francesc Rosselló4

1Department of Mathematics and Computer Science
University of Salerno, 84081 Baronissi, Salerno, Italy

E-mail: adinola@unisa.it

2Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

E-mail: george.paun@imar.ro

3Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: {gpaun, marper}@us.es

4Dept. Mathematics and Computer Science
Research Insitute of health Science (IUNICS)

University of the Balearic Islands, 07122, Palma de Mallorca, Spain

E-mail: cesc.rossello@uib.es

A mathematician from an office placed in the Sevilla central building
of the university proudly says to one placed in his office from the
southern Sevilla building of t he university:

– Look, I am closer than you to Palma de Mallorca!

He is right, but a biologist placed in Palma de Mallorca smiles, be-
cause (s)he s ees no difference. . .

1 (A Sort of) Introduction

The standard P systems are beautiful mathematical toys (maybe of interest for
computer scientists, linguists, etc) which can easily get a smile from Palma-
de-Mallorca-of-biologists. Working with multisets, hence precisely counting the

objects from the compartments of a system (a cell), assuming a universal clock,
which ticks uniformly for all compartments, and using the rules (reactions) in the
maximal parallel manner, or, the other extreme case, in the sequential manner,
are three features which make the life of mathematicians easier and nicer, but
which are science fiction for today biologists. The specification today suggests
that tomorrow can change the things. After all, more than one biologist is
convinced that cellular processes are exact and deterministic, and that it is our
knowledge that is inexact and incomplete, and maybe someday this knowledge
will improve. However, waiting for tomorrow is not always a good strategy (for
sure, not for our employers. . .), so that a sort of obsession wanders the science
in general and membrane computing in particular: to become more and more
realistic! Many papers are motivated in these terms, most of them succeeding
to move (at most? at least?) from the southern building of Sevilla university to
the central one (we do not mention them in the bibliography which closes this
note, but only those which succeed – or at least promise – bigger steps; for the
general bibliography of the area, the reader can consult the known web address
http://psystems.disco.unimib.it), and only part of them already greeting
the biologist from the Valencia beaches. . .

The problem (difficulty) is not that numbers are no longer sure things, thus
contradicting Galileo, but that reality is imprecision (and complexity, but this
is a related but different topic). Even if God does not play dice (how could
Einstein know it?! and, what did he mean with that sentence, actually?), for
us, the humans, dices are indispensable. And not only dices (probabilities), but
also many other sources/forms of uncertainty, in most cases originating in the
partial knowledge we have about processes, phenomena, systems we want to un-
derstand. Probability, partial information, fuzzyness, randomness, stochasticity,
ambiguity, noise (not to mention incompleteness, undecidability, intractability)
are only a few of the main terms related to this issue.

Coping with uncertainty is not only a challenge coming from “reality”, from
practitioners – in our case, mainly from biology. Biology is invoked here (in
general, in membrane computing) mainly because this is the field from where
the membrane computing is inspired and where it promises to return in the
near future tools and applications relevant for biologists. However, membrane
computing started as a branch of (theoretical) computer science, with the aim
of learning something useful, or at least intellectually interesting, for computer
science from the study of the (structure and functioning of the) living cell. The
initial goal had nothing related to any promise to biologists. And yet at this
theoretical level the challenge to deal with various forms of uncertainty appears.
Because mathematics has developed several tools (theories) for handling uncer-
tainty —probability theory, with many branches, fuzzy set theory, rough set
theory, approximate reasoning and approximate algorithmics, etc.— it is a nat-
ural task for the mathematician to bring such tools in membrane computing,
with or without having in mind (and motivating the papers by) how realistic
the models are, from a biological or non-biological point of view.

We want to add here a word of caution for those intending to be realis-
tic. There are indeed many mathematical approaches to uncertainty, and it is

2

mathematically correct to develop an “uncertain” formal computational model
by mixing any previous “crisp” computational model with any one one of these
approaches, but some of these models may not be sound from the point of view
of real world uncertainty modelling.

For instance, a fuzzy set F : X → [0, 1] (or with range any frame) assigns to
each element of the (crisp) set X “the value with which this element belongs to
the set F ,” but it can also be understood, dually, as assigning to each element
of X “its value of having property F” or even “its value of approximating the
element F .” In this way, fuzzy set theory appears as suitable to work with
mixtures, non-crisp properties, and degrees of approximation, but not to work
with other types of uncertainties. Thus, for instance, our lack of knowledge
of the place where a molecule is at a given moment shouldn’t be modelled by
means of a raw fuzzy set, but using the probability values of all possible places.
Other approaches, like possibility theory of belief theory, can be used here, but
then they model more than simply our “lack of knowledge.” And although a
probability distribution is a fuzzy set, it is not sound to use general fuzzy set
theory methods, like aggregation techniques or distances between fuzzy sets,
to handle probabilities. On its turn, rough set theory approximates crisp sets
“from below” and “from above,” and it can be used in a natural way to model
approximations set-theoretically, but not numerically. And so on. . .

This long (and, admittedly, imprecise) discussion is intended to stress the
fact that the topics/suggestions mentioned below are not necessarily meant to
“bring P systems closer to biology” (sometimes, one even writes “back to bi-
ology”), although such a goal is implicit and it would be a nice “by-product”
of the possible results obtained in the study of these topics/suggestions. The
questions formulated below are just natural from a mathematical point of view
(although in their formulation we will use biological motivation/metaphora).

Then, an important point we want to make is the fact that this note is ex-
plicitly meant to foster discussions, researches, collaborations during the Brain-
storming Workshop on Uncertainty in P Systems, Palma de Mallorca, November
2004. This is not a research paper, is only a positional paper, a provocation to
the participants in the meeting. The choice of issues is subjective, their order-
ing has no significance (of importance), the list is not meant to be exhaustive,
the classification below is approximate. And, of course, many formulations are
imprecise enough; already formulating in a rigorous manner such topics would
be a matter of investigation.

Finally, a warning/precaution related to the bibliography: we have men-
tioned many titles at the end, all we know in this moment in membrane com-
puting area related to the topic of this discussion, but we will cite very few of
them in the text, although many of them are directly related to the issues we
discuss. Also, we do not mention any book or paper related to the mathematical
approaches to uncertainty/imprecision, for instance, about fuzzy or rough set
theories; there are huge bibliographies (on the web) about these topics and the
reader can easily find such an information.

3

2 The Identification of Objects

Let us start “from inside”, from the objects swimming and evolving in the
compartments of a membrane structure.

Are we (always) entitled to say that the object a is in region i? Actually,
what means “the object” a? If we “see” a molecule x, how much are we sure
that it is of type a and not of type b? What about considering estimations
for x to be of one of the types from a given list, for instance, expressed in the
form of probabilities? We can then discuss about objects with probability .8
to be a and .2 to be b. This can be also a matter of possibilities, leading to
the use of possibility values and theory instead of probability ones, of beliefs,
closer to fuzzy set theory, or of similarities, which lead to classification in terms
of rough sets theory. We can go further (making the life of the mathematician
still harder), working with objects x identified by statements of the form “x is
an object from the set {a, b, c} with probability .66 and from the set {d, e} with
probability .34.” The two sets are here disjoint, but in a general case they can be
not. What can we do with additional statements of the form “with probability
1, x is not from the set {a, f}?”

We have here also another sensitive issue, related to the fact that in the
compartments of a P system we deal with copies of objects. What is a copy?
(S. Marcus posed somewhere a much more dramatic question: do there exist
copies?) If we cannot precisely identify an object, then we cannot precisely say
when one object is a copy of the other (hence that they are indistinguishable,
for instance, for the evolution rules). Can we work with similar objects, instead
of identical objects? Equality is an equivalence relation, similarity is only a
tolerance relation (it is not transitive), leading to tolerance classes which are
not necessarily disjoint. This raises problems when handling the objects, as
they are not “crispy” classified. Should we return to numerical estimations of
the similarity, which could be used for instance to model inexact, mutated or
simply modified copies, or should we remain in a qualitative framework (e.g.,
working with a similarity relation)?

And finally, do always these questions matter? For instance, in molecular
biology, methylated DNA can act in some reactions as usual, non-methylated
DNA, but it may lead to errors (with a certain probability!) in other reactions,
yielding inexact results, and it cannot be involved at all in other reactions that
need definitely non-methylated DNA molecules. Should we impose consequently
that some distinctions, or similarities, matter as far as some rewriting rules are
concerned, but not for the remaining ones?

3 The Place of Objects

After identifying the objects, we have to place them in the compartments of
a membrane structure, maybe also taking into account the environment, and
this is again a rich source of imprecision. Even if we try in a laboratory to
introduce ourselves a molecule in a compartment of a cell, we cannot be always

4

sure that the result is the one we expect; still more difficult is to fish for a
molecule in a given compartment. Furthermore, many chemicals from the cell
are macromolecules, maybe long chains of atoms, which can be placed with
an end in a compartment and the other end in another compartment (like the
many proteins embedded in the membranes). We have also to mention that the
molecules move continuously across membranes.

In short, it makes sense to assign probabilities (estimations) to the fact that
a given object is placed in a given compartment, and this is directly related to
the next point.

4 Describing the Multisets

Which objects are at a given time in a given compartment, and how many copies
of each? From the probabilities assigned to the presence of objects in a given
compartment we can have a probabilistic estimation of the contents of that
compartment. Maybe more natural is to have fuzzy set estimations or rough set
approximations of multisets from compartments (at least, because the general
study of fuzzy and rough multisets is well developed and can provide tools to
use in our area).

Rough set theory looks particularly attractive, because the basic issue of
this theory is to approximate a set by an upper and a lower approximation, the
latter one surely included in the set, the former one surely including the set, in
between having a border, as larger as higher the imprecision is. By enlarging
the available information, the two approximations can converge to the real set,
thus making smaller and smaller the border. How this attractive idea can be
used in a P system? For instance, which rules should be used for evolving the
objects from the border? Should they participate in the same (cooperative)
rules with objects from the lower approximation and/or from outside the upper
approximation?

On its turn, fuzzy set theory can be used to represent statements like “there
are around seven copies of reactive a in that membrane,” by defining, for in-
stance, the content of a membrane as a mapping sending each reactive a to a
fuzzy natural number, i.e., a mapping na : N → [0, 1] that has some suitable
properties.

Other, not so well-know approaches already introduced to handle approx-
imately defined quantities, or specially tailored a posteriori, can be used to
define generalized multisets that model other kinds of uncertain contents of
membranes. For instance, techniques imported from interval calculus can be
used to manipulate multisets sending a reactive to, say, “somewhere between 5
and 9.”

Of course, we can try to learn something (or to get challenges) from the
biologist or from the bio-chemist. On the one hand, the former one will push
us towards linguistic logic, because (s)he currently works with statements using
such terms as “many molecules”, “sufficiently large population”, “high enough
pressure,” and so on. Fuzzy set theory can be used in this connection, since

5

statements like “there are many copies of reactive a in that membrane” corre-
spond to define the multisets that describe the membranes contents as mappings
that send each reactive to a linguistic variable, and these multisets can be ma-
nipulated using techniques imported from fuzzy control theory.

On the other hand, bio-chemists work with probabilities, reaction rates, con-
centrations, gradients, stoichiometric constants, etc.. All these mean real (well,
rational) numbers, associated both with the contents of membranes and with
the reactions taking place in/on the membranes. Multisets with real multiplic-
ities associated with objects have been already considered, e.g., in [9, 15, 16].
In particular, the first cited paper started a systematic study of P systems with
non-discrete multisets, but the topic is far from being exhausted.

It should be mentioned that in most biological applications of P systems re-
ported so far, the rules have associated probabilities/reaction rates, sometimes
dynamically computed, in accordance with the current population of objects,
using standard techniques from biochemistry (e.g., stoichiometric constants),
which, interestingly enough, brings continuous mathematics aspects in the func-
tioning of P systems, which, in the basic version, are essentially discrete ma-
chineries.

5 The Level of Rules

All the previous sources of uncertainty and ideas about ways to capture/handle
them in P systems at the level of objects and multisets have a direct connection
with the way the evolution rules are defined and applied. How precise is a
rule defined? Are the multisets from its left and right hand members precise
or not? If not, what this means? What about the relation between the left
and the right hand multisets, whatever their definition is? Furthermore, in the
case of multiset-rewriting rules, where targets are associated with the objects
newly introduced by a rule, we can question the precision of these targets, and
associate with each object all targets, with probabilities assigned to them: for
instance, something like (a : here.5, out.2, in.3). In this way, probabilities are
assigned to the presence of an object in a given compartment, hence even if we
start from a precisely known system, after a while the place of objects will be
only probabilistically known.

Besides, are the reactions the same at different moments, or their result also
depends on parameters other than the contents of the compartment where they
are used?

When a rule can/should be used? This has to do with the probability for
a reaction to take place, which, in turn, depends on the concentration of reac-
tants, but also on reaction conditions (temperature, pH, available energy, etc).
We do not repeat the previous discussion about reaction rates, stoichiometry,
etc., but these terms are highly relevant here. An important issue concerns the
relationship between non-determinism and various forms of uncertainty; intu-
itively, by assigning probabilities (rates of reaction) to rules, we diminish the
non-determinism in using the rules, as the probability induces some priority

6

relation among rules. This topic deserves a more detailed examination, for
instance, in relation with the resolution of computationally hard problems by
means of P systems.

Finally: if the multisets of objects from compartments are fuzzy or rough
sets, what about applying to them sets (or multisets) of rules which are also
fuzzy or rough?

6 The Clock and the Parallelism

These two issues are related. Without an external clock it is difficult (but prob-
ably not impossible) to define the functioning and the result of a P system, but
assuming that all compartments have the same clock and that all rules/reactions
last the same amount of time is far from. . . Palma de Mallorca. Getting rid of
the internal clock is a great topic and the first results started to appear, see, e.g.,
[7, 8, 22]. “No clock” does not necessarily mean “no internal time” (for instance,
no known duration of rules), but the internal time can be different from a com-
partment to another one, with rules of different durations, maybe expressed in
non-integer numbers, maybe simply unknown. The collaboration between (co-
operative) rules can be achieved through the objects they produce, the rules can
also be synchronized by signals or promoters/inhibitors, with a great flexibility
in what concerns the moment where the necessary objects become available.

The question of time is directly connected to that of parallelism. Maximal
parallelism is powerful (e.g., because it can provide information about the whole
multiset from a compartment), the sequential use of rules is easy to handle, but
the truth is somewhere in media res. How to deal with “partial parallelism,”
what this means and how can it be estimated?

7 Other (Related) Issues

Of course, there are many other things to discuss in this framework. We have
said nothing explicit about the environment, which also can be described in
imprecise terms. Then, we mentioned above only multiset-rewriting rules, but
the same issues can be formulated for symport and antiport rules, which move
multisets (of which type?) of objects (how precisely known?) from a region to
another one (how precisely defined?) and that can even degenerate (with some
probability?) with each movement.

In the previous sections we have talked about imprecision in general, without
mentioning possible degrees of imprecision. Given a system, can we evaluate its
degree of imprecision? Given two systems, can we say that one of them is better
identified than the other one? (Of course, such a comparison asks for an external
observer —a crisp one, maybe.) In what terms, using which measures? Maybe
entropy, maybe other criteria. When a system contains “too much” imprecision,
so that it makes no sense to further work with it, because the information we
get is irrelevant (non trustful)? How the degree of imprecision can be decreased,

7

what is the information we can get and which we have to look for in order to
improve the knowledge about a system? Working with degrees of approximation
and the asymptotic convergence of approximations to the set one looks for, are
standard issues in rough set theory; it remains to implement them also in P
systems.

The previous topic is related to using approximation in an operational man-
ner, for instance, in terms of probabilistic or randomized algorithms. If we
cannot solve a problem with reasonable resources (polynomial space and time),
then let us try to have an approximate solution, with a well estimated degree of
accuracy, or an optimal solution which is however found only with some precisely
estimated chance, but using reduced resources (larger the resources, bigger the
probabilities to get a good solution or to get a solution at all). In membrane
computing the challenge is clear: “solving” hard problems in polynomial time,
but not using an exponential workspace (even created in the natural way pro-
vided by membrane division or string replication), but a polynomial workspace,
by paying in the accuracy of the certainty of the solution. The question waits
to be systematically approached.

Finally, there are many other sources of imprecision. Non-determinism and
confluence (in the strong sense, all configurations lead to a unique configuration,
or in the weak sense, all configurations lead to configurations from a given class,
having a specified property) are standard properties of P systems. How are they
related to imprecision? What means in our context ambiguity or synonymy, to
mention only two sources of imprecision from linguistics?

We hope that the reader will take the turn and address these questions (at
least by reformulating them in mathematical terms) or related ones, thus moving
the area closer to reality/biology (and the reader her-himself to Palma. . .).

References

[1] I.I. Ardelean, M. Cavaliere, Modelling biological processes by using a prob-
abilistic P system software, Natural Computing, 2, 2 (2003), 173–197.

[2] I. Ardelean, M. Cavaliere, Playing with a probabilistic P system simulator:
Mathematical and biological problems, Brainstorming Week on Membrane
Computing, Tarragona, February 2003, TR 26/03, URV, 2003, 37–45.

[3] D. Besozzi, C. Zandron, Dynamical probabilistic P systems, DNA10
(poster?).

[4] M. Buzzi, Calcolo con membrane. P sistemi probabilistici, Master Thesis,
Univ. of Como, 2003.

[5] J. Casasnovas, F. Rosselló, Scalar and fuzzy cardinalities of crisp and fuzzy
multisets, submitted, 2003.

8

[6] J. Casasnovas, J. Miró, M. Moyà, F. Rosselló, An approach to membrane
computing under inexactitude, Intern. J. Foundations of Computer Sci.,
to appear.

[7] M. Cavaliere, Towards asynchronous P systems, Pre-proceedings of Fifth
Workshop in Membrane Computing, WMC5, Milano, Italy, 2004, 161–173.

[8] M. Cavaliere, D. Sburlan, Time-independent P systems, Membrane Com-
puting. International Workshop WMC5, Milano, Italy, 2004, LNCS ??,
Springer, 2005.

[9] A. Cordón-Franco, F. Sancho-Caparrini, Non-discrete P systems, Pre-
proceedings of Fifth Workshop in Membrane Computing, WMC5, Milano,
Italy, 2004, 205–207.

[10] R. Freund, Asynchronous P systems, Pre-proceedings of Fifth Workshop in
Membrane Computing, WMC5, Milano, Italy, 2004, 12–28.

[11] V. Manca, On the dynamics of P systems, Pre-proceedings of Fifth Work-
shop in Membrane Computing, WMC5, Milano, Italy, 2004, 29–43.

[12] S. Marcus, Tolerance multisets, Multiset Processing. Mathematical, Com-
puter Science and Molecular Computing Points of View, LNCS 2235,
Springer, 2001, 217–223.

[13] S. Miyamoto, Fuzzy multisets and their generalizations, Multiset Process-
ing. Mathematical, Computer Science and Molecular Computing Points of
View, LNCS 2235, Springer, 2001, 225–236.

[14] M. Mutyam, Probabilistic rewriting P systems, Int. J. Found. Computer
Sci., 14, 1 (2003), 157–166.

[15] T.Y. Nishida, Multiset and K-subset transforming systems, Pre-proc.
Workshop on Multiset Processing, Curtea de Argeş, Romania, TR 140,
CDMTCS, Univ. Auckland, 2000, 193–202, and Multiset Processing. Math-
ematical, Computer Science and Molecular Computing Points of View,
LNCS 2235, Springer, 2001, 255–266.

[16] T.Y. Nishida, Simulation of photosynthesis by a K-subset transforming
system with membranes, Pre-proc. Workshop on Membrane Computing,
Curtea de Argeş, 2001, Technical Report 17/01 of RGML, URV, Tarragona,
223–228, and Fundamenta Informaticae, 49, 1-3 (2002), 249–259.

[17] A. ObtuÃlowicz, Probabilistic P systems, Pre-proceedings of Workshop on
Membrane Computing, Curtea de Argeş, Romania, August 2002, MolCoNet
Publication No 1, 2002, 331–332, and LNCS 2597, Springer, 2003, 377–387.

[18] A. ObtuÃlowicz, Mathematical models of uncertainty with a regard to mem-
brane systems, Brainstorming Week on Membrane Computing, Tarragona,
February 2003, TR 26/03, URV, 2003, 241–246, and Natural Computing,
2, 3 (2003), 251–263.

9

[19] A. ObtuÃlowicz, General multi-fuzzy sets and fuzzy membrane systems, Pre-
proceedings of Fifth Workshop in Membrane Computing, WMC5, Milano,
Italy, 2004, 316–326.

[20] A. ObtuÃlowicz, Gh. Păun, (In search of) Probabilistic P systems, BioSys-
tems, 70, 2 (2003), 107–121.

[21] F. Sancho-Caparrini, A note on complexity measures for probabilistic P sys-
tems, Proceedings of the Second Brainstorming Week on Membrane Com-
puting, Sevilla, February 2004, Technical Report 01/04 of Research Group
on Natural Computing, Sevilla University, Spain, 2004 443–448, and JUCS,
10, 5 (2004), 559–539.

[22] D. Sburlan, Clock-free P systems, Pre-proceedings of Fifth Workshop in
Membrane Computing, WMC5, Milano, Italy, 2004, 372–383.

[23] A. Syropoulos, Fuzzifying P systems, submitted, 2004.

10

Tutorials

Plasma membrane, compartmentation, transport,
and imprecisions

Óscar Moya Mesa

Department of Biology,
University of the Balearic Islands,
07122 Palma de Mallorca (Spain)

E-mail: omoya@uib.es

A cell is delimited by its plasma membrane. It is a compartmentation that
allows qualitative and quantitative differences between its inner contents and
the environment.

A cell, or even a group of cells, can be considered different compartments
where membrane properties determine the communication between them due to
their properties:

• they act as highly selective filters and molecular transport mechanisms
for;

• they control the entry of nutrients and exit of residual products;

• they generate differences between contents and environment;

• they have systems to detect external signals allowing the cellular compart-
ment to react to environmental (external compartment) changes.

There is a basic common structure in all eucariotic cell membranes. Phos-
pholipids are disposed in a bilayer, as those assimetric molecules create sponta-
neously this structure in an aqueous environment. A phospholipid has a head
group attached via a phosphat group to a 3-carbon glycerol backbone, and two
fatty acid tails attached to the remaining two carbons of the glycerol. The head
is polar, property that confers this part of the molecule affinity to water, in
contrast to the tails that are hydrophobic. The simpler phospholipid membrane
structure would be a liposome, where the polar heads are exposed to water be-
cause of their hydrophilic properties and the tails are in the middle of the bilayer.
But a plasma membrane is much more than a liposome: proteins, glucosacarids
and cholesterol are other components. Proteins are specially important as they
play a key role in transport, signal detection, and regulation.

Without proteins, lipid membranes would be relatively impermeable to ions
and many other small molecules, but permeable to water. In fact, they are

permeable to almost all molecules: apolar and polar molecules without electro-
chemical charge can freely go from one side to the other; even polar charged
ones can, as it is only a matter of time that they cross from one side to the
other. Molecular size and polarity will determine the speed of molecular inter-
change between both sides, but in biological terms of funtionality we can say
that proteins are necessary to mediate transport to allow cellular activity.

Living organisms, and in fact cells, need to communicate with their envi-
ronment, they need the entry and exit of ions, simple, and complex molecules.
Most of the small molecules and ions need help to cross the membrane in form
of transmembrane channels or active transport. This transport can be passive,
depending on concentration and electrical potential gradients, or active (against
gradients and with energy use). The first case correspond to the channels, the
second to active transport proteins.

These cellular structures, their characteristics of compartmentation and com-
munication have been used in mathematic modelling, in membrane computing.
At a first stage very simple models have arisen, where some standard rules can
explain how the molecules are placed in the different compartments and how
they “move” from one to the other. But biological structures are much more
complex. Even more, is not only a matter of complexity what characterizes
biological systems, randomness has a lot to say in these processes. Now, the
tendence is trying to incorporate these properties in the new models, to get
a better approach to reality or simply to try other kinds of computation to
test their possibilities. There are models that handle imprecisions, that search
how to incorporate the stochasticity associated to biological processes in their
calculations.

To do that it is necessary to have a more realistic view about plasma mem-
branes. They are active structures in different ways, one is its fluidity. Both
monolayers are not static, their components move along its surface in a more
or less aleatory form. This movement is chaotic and depends both on chance
and environmental factors. Although the cell has some control, concentrating
some specific molecules in concrete zones, depending on needs and functional-
ity, this control is relative and the molecules still move freely and chaotically in
theses regions. Chemical reactions have certain degree of randomness as well,
molecules do not interact always in the same way, even with a very similar final
result.

Biological systems are complex, even our scarce knowledge lets us notice how
complicate they can be, how difficult it is to know and control all the factors
that are implied. The most simple mechanisms or reactions are regulated and
affected by environmental and cellular conditions. There are many sources of
imprecision related to:

• transport systems: their specificity, regulatory mechanisms...

• the molecules that will be transported: concentration, difussion rates,
gradients, electrochemical charge, solubility, similarity...

• membrane properties: fluidity, surface, dinamics, membrane electrochem-

14

ical potential, quantity and distribution of their components...

• inner and outer cell physicochemical conditions: pH, temperature, ionic
concentration...

In summary there is imprecision due to the lack of knowledge about which
factors interfer, how they do it, and to the stochasticity of biological and chem-
ical dinamics. Randomness and complexity in biological systems are the two
main causes of imprecision that should be taken into account for membrane
computing in a more realistic scenario.

From a biologist point of view, at a first stage it would be preferable to work
with well known systems, as modelling them is much easier and the complexity
factor can be better controlled. Randomness is still present and could be incor-
porated via probabilistic calculations. A good first choice could be to model the
sodium-potassium pump, a transport system with a key role in osmotic equi-
librium and stabilization of cellular volume. Its biological relevance has been
the focus of many research efforts in learning how they work, their regulation
systems and how external conditions affect their activity.

This work has been partially supported by the Spanish DGES, project
REN2003-00024.

15

Introduction to Membrane Computing

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

E-mail: george.paun@imar.ro

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: gpaun@us.es

Abstract. This is a comprehensive (and – supposed – friendly)
introduction to membrane computing, meant to offer both to com-
puter scientists and to non-computer scientists an up-dated overview
of the domain. That is why the panoply of notions which are intro-
duced here is rather large, but the presentation is informal, with-
out any proof and with rigorous definitions given only for the basic
types of P systems – symbol-object P systems with multiset rewrit-
ing rules, systems with symport/antiport rules, systems with string-
objects, tissue-like P systems, and neural-like P systems. Besides a
list of (biologically inspired or mathematically motivated) ingredi-
ents/features which can be used in systems of these types, we also
mention a series of results – as well as a series of research trends
and topics. Then, both some applications are briefly mentioned and
a discussion is made about the attractiveness of this framework for
(possible) applications, especially in biology.

1 (The Impossibility of) A Definition of Mem-
brane Computing

Membrane computing is an area of computer science aiming to abstract com-
puting ideas and models from the structure and the functioning of living cells, as
well as from the way the cells are organized in tissues or higher order structures.

In short, it deals with distributed and parallel computing models, processing
multisets of symbol-objects in a localized manner (evolution rules and evolving

objects are encapsulated into compartments delimited by membranes), with
an essential role played by the communication among compartments (with the
environment as well). Of course, this is just a rough description of a membrane
system – hereafter called P system – of the very basic type, as many different
classes of such devices exist.

The essential ingredient of a P system is its membrane structure, which can
be a hierarchical arrangement of membranes, like in a cell (hence described by
a tree), or a net of membranes (placed in the nodes of a graph), like in a tis-
sue, or in a neural net. The intuition behind the notion of a membrane is that
from biology, of a three–dimensional vesicle, but the concept itself is general-
ized/idealized to interpreting a membrane as a separator of two regions (of the
Euclidean space), a finite “inside” and an infinite “outside”, also providing the
possibility of a selective communication among the two regions.

The variety of suggestions from biology and the range of possibilities to define
the architecture and the functioning of a membrane-based-multiset-processing
device are practically endless – and already the literature of membrane com-
puting contains a very large number of models. Thus, membrane computing
is not a theory related to a specific model, it is a framework for devising com-
partmentalized models. Both because the domain is rather young (the trigger
paper is [77], circulated first on web, but related ideas were considered before,
in various contexts), but also as a genuine feature, based both on the biological
background and the mathematical formalism used, not only there are already
proposed many types of P systems, but the flexibility and the versatility of P
systems seem to be, in principle, unlimited.

This last observation, as well as the rapid development and enlargement of
the research in this area, make impossible a short and faithful presentation of
membrane computing, with any good level of completeness.

However, there are a series of notions, notation, models which are already
“standard”, which have stabilized and can be considered as basic elements of
membrane computing. This paper is devoted to presenting mainly such notions
and models, together with the associated notation.

The presentation will be both historically and didactically organized, intro-
ducing first either notions which were investigated from the beginning in this
area, or simpler notions, able to quickly offer an image of membrane computing
to the reader who is not familiar with the domain.

The reader has surely noticed that all the previous discussion refers mainly
to computer science (goals), and much less to biology. Membrane computing
was not initiated as an area aiming to provide models to biology, in particular,
models of the cell. Still in this moment, after a considerable development at
the theoretical level, the domain is not fully prepared to offer such models to
biology – but this is a strong tendency of the recent research and considerable
advances towards such achievements were reported (the topic will be discussed
later in more details).

18

2 Membrane Computing as Part of Natural
Computing

Before entering into more specific elements of membrane computing, let us spend
some time with the relationship of this area with, let us say, using the “local”
terminology, the “outside”. We have said above that membrane computing is
part of computer science. However, the genus proximus is natural computing,
the general attempt to learn computer science useful ideas, models, paradigms
from the way nature – life especially – “computes”, in various circumstances
where substance and information processing can be interpreted as computations.
Classic bio-inspired branches of natural computing are genetic algorithms (more
generally, evolutionary computing, with well individualized sub-branches such
as evolutionary programming) and neural computing. Both of them have a long
history, which can be traced until unpublished works of Turing (see, e.g., [97]),
many applications, and a huge bibliography. Both of them are a proof that
“it is worth learning from biology”, supporting the optimistic observation that
many billions of year nature/life has adjusted certain tools and processes which,
correctly (luckily?) abstracted and implemented in computer science terms, can
prove to be surprisingly useful in many applications.

A more recent branch of natural computing, with an enthusiastic beginning
and unconfirmed yet computational applicability (we do not discuss here the
by-products, such as the nanotechnology related developments), is DNA com-
puting, whose birth certificate is related to Adleman experiment [1] of solving a
(small) instance of the Hamiltonian path problem by handling DNA molecules
in a laboratory. According to Hartmanis [50], [51], it was a demo that we
can compute with bio-molecules, a big event for computability. However, af-
ter one decade of research, the domain is still preparing its tools for a possible
future practical application and looking for a new breakthrough idea, similar
to Adleman’s one from 1994. However, at the theoretical level, DNA comput-
ing is beautifully developed (see, e.g., [85] and the proceedings of the yearly
DNA Based Computers series of conferences). This is both due to the fact that
DNA structure and processing suggest a series of new data structures (e.g., the
double stranded sequence, with the pairs of corresponding symbols from the
two strands being related through a complementarity relation) and operations
(e.g., recombination, denaturation, hybridization), but also to the fact that the
massive parallelism made possible by the efficiency of DNA as a support of in-
formation promises to be useful in solving computationally hard problems in
a feasible time. Actually, at the theoretical level one can say that DNA com-
puting started already in 1987, when T. Head [49] has proposed a language
theoretic model of what he called the splicing operation (the recombination of
DNA molecules, cut by restriction enzymes in fragments pasted together when
the sticky ends match).

Both evolutionary computing and DNA computing are inspired from and
related to handling DNA molecules. Neural computing considers the neurons
are simple finite automata linked in networks of specific types. Thus, these

19

“neurons” are not interpreted as cells, with an internal structure and life, but
as “dots on a grid”, with a simple input–output function. (The same observation
holds true for cellular automata, where again the “cells” are “dots on a grid”,
only interacting among them, in a rigid structure.) None of these domains
considers the cell itself as its main object of research, in particular, none of these
domains pays any attention to membranes and compartmentalization – and this
is the point where membrane computing enters the stage. Thus, membrane
computing can be seen as an extension of DNA (more generally, molecular)
computing, from the “one-processor” level to a distributed computing model.

3 Laudation to the Cell (and Its Membranes)

Life (as we know it on Earth, in the traditional meaning of the term, that inves-
tigated by biology) is directly related to cells, everything alive consists of cells
or has to do in a direct way with cells. The cell is the smallest “thing” unan-
imously considered as alive. It is very small and very intricate in its structure
and functioning, has an elaborate internal activity and an exquisite interaction
with the neighboring cells, and with the environment in general. It is fragile and
robust at the same time, with a way to organize (control) the bio-chemical (and
informational) processes which was polished during billions of years of evolution.

Any cell means membranes. The cell itself is defined – separated from its
environment – by a membrane, the external one. Inside the cell, several mem-
branes enclose “protected reactors”, compartments where specific biochemical
processes take place. In particular, a membrane encloses the nucleus (of eukary-
otic cells), where the genetic material is placed. Through vesicles enclosed by
membranes one can transport packages of molecules from a part of the cell (e.g.,
from the Golgi apparatus) to other parts of the cell – in such a way that the
transported molecules are not “aggressed” during their journey by neighboring
chemicals.

Then, the membranes allow a selective passage of substances among the
compartments delimited by them. This can be a simple selection by size, in
the case of small molecules, or a much more intricate selection, through pro-
tein channels, which not only select, but can also move molecules from a low
concentration to a higher concentration, perhaps coupling molecules, through
so-called symport and antiport processes.

Much more: the membranes of a cell do not only delimit compartments
where specific reactions take place in solution, hence inside the compartments,
but many reactions in a cell develop on the membranes, catalyzed by the many
proteins bound on them. It is said that when a compartment is too large for the
local biochemistry to be efficient, life creates membranes, both in order to create
smaller “reactors” (small enough that, through the Brownian motion, any two
of the enclosed molecules can collide frequently enough), and in order to create
further “reaction surfaces”. Anyway, biology contains many fascinating facts
from a computer science point of view, and the reader is encouraged to check
the validity of this assertion browsing, e.g., through [2], [64], [8].

20

Life means surfaces inside surfaces, as can be learned already from the title
of [52], while S. Marcus puts it in an equational form [69]: Life = DNA software
+ membrane hardware.

Then, there are cells living alone (unicellular organisms, such as ciliates, bac-
teria, etc.), but in general the cells are organized in tissues, organs, organisms,
communities of organisms. All these suppose a specific organization, starting
with the direct communication/cooperation among neighboring cells, and end-
ing with the interaction with the environment, at various levels. Together with
the internal structure and organization of the cell, all these suggest a lot of
ideas, exciting from a mathematical point of view, and potentially useful from a
computability point of view. Part of them were already explored in membrane
computing, much more still wait for research efforts.

4 Some General Features of Membrane Com-
puting Models

Still remaining at this general level, it is worth mentioning from the begin-
ning some of the basic features of models investigated in this area, besides the
essential use of membranes/compartmentalization.

We have mentioned above the notion of a multiset. The compartments of a
cell contains substances (ions, small molecules, macromolecules) swimming in an
aqueous solution; there is no ordering there, everything is close to everything, the
concentration matters, the population, the number of copies of each molecule
(of course, we are abstracting/idealizing here, departing from the biological
reality). Thus, the suggestion is immediate: to work with sets of objects whose
multiplicities matter, hence with multisets. This is a data structure with peculiar
characteristics, not new but not systematically investigated in computer science.

A multiset can be represented in many ways, but the most compact one
is in the form of a string. For instance, if the objects a, b, c are present in,
respectively, 5, 2, 6 copies each, we can represent this multiset by the string
a5b2c6; of course, all permutations of this string represent the same multiset.

Both from the string representation of multisets and because of the bio-
chemical background, where standard chemical reactions are common, the sug-
gestion comes to process the multisets from the compartments of our computing
device by means of rewriting-like rules. This means rules of the form u → v,
where u and v are multisets of objects (represented by strings). Continuing
the previous example, we can consider a rule aab → abcc. It indicates the fact
that two copies of object a together with a copy of object b react, and, as a
result of this reaction, we get back a copy of a as well as the copy of b (hence
b behaves here as a catalyst), and we produce two new copies of c. If this rule
is applied to the multiset a5b2c6, then, because aab are “consumed” and then
abcc are “produced”, we pass to the multiset a4b2c8. Similarly, by using the
rule bb → aac, we will get the multiset a7c7, which contains no occurrence of
object b.

21

Two important problems arise here.
The first one is related to the non-determinism. Which rules should be

applied and to which objects? The copies of an object are considered identical,
so we do not distinguish among them; whether to use the first rule or the second
one is a significant issue, especially because they cannot be used both at the
same time (for the mentioned multiset), as they compete for the “reactant” b.
The standard solution to this problem in membrane computing is that the rules
and the objects are chosen in a non-deterministic manner (at random, with no
preference; more rigorously, we can say that any possible evolution is allowed).

This is also related to the idea of parallelism. Biochemistry is not only (in
a certain degree) non-deterministic, but it is also (in a certain degree) parallel.
If two chemicals can react, then the reaction does not take place for only two
molecules of the two chemicals, but, in principle, for all molecules. This is
the suggestion supporting the maximal parallelism used in many classes of P
systems: in each step, all rules which can be applied have to be applied to all
possible objects. We will come back to this important notion later, but now
we only illustrate it with the previous multiset and pair of rules. Using these
rules in the maximally parallel manner means to either use the first rule twice
(thus involving four copies of a and both copies of b) or once the second rule (it
consumes both copies of b, hence the first rule cannot be used at the same time).
In the first case, one copy of a remains unused (and the same with all copies of
c), and the resulting multiset is a3b2c10; in the second case, all copies of a and c
remain unused, and the resulting multiset is a7c7. It deserves to be noted that
in the latter case the maximally parallel application of rules corresponds to the
sequential (one in a time) application of the second rule.

There also are other types of rules used in membrane computing (e.g., sym-
port and antiport rules), but we will discuss them later. Here we close with
the observation that membrane computing deals with models which are intrin-
sically discrete (basically, working with multisets of objects, with the multiplic-
ities being natural numbers) and evolve through rewriting-like (we can also say
reaction-like) rules.

5 Computer Science Related Areas

Rewriting rules are standard rules for handling strings in formal language theory
(although other types of rules are also used, both in formal language theory
and in P systems, such as insertion, deletion, context-adjoining, etc.). Also
working with strings modulo the ordering of symbols is “old stuff”: commutative
languages (investigated, e.g., in [35]) are nothing else than the permutation
closure of languages. In turn, the multiplicity of symbol occurrences in a string
corresponds to the Parikh image of the string, which directly leads to vector
addition systems, Petri nets, register machines, formal power series.

Then, also the parallelism is considered in many areas of formal languages,
and it is the main feature of Lindenmayer systems. These systems deserve a
special discussion here, as they are a well developed branch of formal language

22

theory inspired from biology, specifically, from the development of multi-cellular
organisms (which can be described by strings of symbols). However, for L
systems the cells are considered as symbols, not their structure is investigated
but their organization in (mainly linear) patterns. P systems can be seen as
dual to L systems, as they zoom in the cell, distinguishing the internal structure
and the objects evolving inside it – maybe also distinguishing (when “zooming
enough”) the structure of the objects themselves, which leads to the category
of P systems with string-objects.

However, a difference exists between the kind of parallelism in L systems
and that in P systems: there the parallelism is total – all symbols of a string
should be processed at the same time, here we work with a maximal parallelism
– we process as many objects as possible, but not necessarily all of them.

Still closer to membrane computing are the multiset processing languages,
the most known of them being Gamma [9, 10]. The standard rules of Gamma
are of the form u → v(π), where u and v are multisets and π is a predicate
which should be satisfied by the multiset to which the rule u → v is applied.
The generality of the form of rules ensures a great expressivity and, in a direct
manner, computational universality. What Gamma does not have (at least in
the initial versions) is distributivity. Then, membrane computing restricts the
form of rules, on the one hand, as imposed by the biological roots, on the other
hand, in search of mathematically simple and elegant models.

Also membranes appear, even in Gamma related models, and this is the
case with CHAM, the Chemical Abstract Machine of Berry and Boudol, [16], the
direct ancestor of membrane systems – with the mentioning that the membranes
of CHAM . . . are not membranes as in the cell biology, but they correspond to
the contents of membranes, multisets and lower level membranes together, while
the goals and the approach are completely different, directed to the algebraic
treatment of the processes these membranes can undergo. From this point of
view, of goals and tools, CHAM has a recent counterpart in the so-called brane
calculus (of course, “brane” comes from “membrane”) from [22] (see also [89] for
a related approach), where process algebra is used for investigating the processes
taking place on membranes and with membranes of a cell.

The idea of devising a computing device based on compartmentalization
through membranes was also suggested in [66].

Many related areas and many roots, with many common ideas and many
differences. In some extent, membrane computing is a synthesis of part of these
ideas, integrated in a framework directly inspired from the cell biology, paying
the deserved attention to membranes (hence to distribution, hierarchization,
communication, localization and to other related concepts), aiming – in the
basic types of devices – to find computing models, as elegant (minimalistic)
as possible, as powerful as possible (in comparison with Turing machines and
their subclasses), and as efficient as possible (able to solve computationally hard
problems in a feasible time).

23

6 The Cell-Like Membrane Structure

We move now towards presenting in a more precise manner the computing mod-
els investigated in our area, and we start by introducing one the fundamental
ingredients of a P system, namely, the membrane structure.

The meaning of this notion is illustrated in Figure 1, and this is what we can
see when looking (through mathematical glasses, hence abstracting as much as
necessary in order to obtain a formal model) to a standard cell.

'

&

$

%

'

&

$

%

#

"

Ã

!
#
"

Ã
!

º
¹

·
¸

¾
½

»
¼

'
&

$
%

º
¹

·
¸

º
¹

·
¸

membranes

elementary membrane

environment environment

regions

skin

1
2

3

4

5

6

7

8

9

@
@

@
@

@@R

HHHHj

PPPPPPPPPPq

À »»»»»»9 ´

´
´

´
´́+

¶
¶

¶
¶/

S
Sw

Figure 1: A membrane structure

Thus, as suggested by Figure 1, a membrane structure is a hierarchically
arranged set of membranes, contained in a distinguished external membrane
(corresponding to the plasma membrane and usually called the skin membrane).
Several membranes can be placed inside the skin membrane (they correspond to
the membranes present in a cell, around the nucleus, in Golgi apparatus, vesicles,
mitochondria, etc.); a membrane without any other membrane inside it is said to
be elementary. Each membrane determines a compartment, also called region,
the space delimited from above by it and from below by the membranes placed
directly inside, if any exists. Clearly, the correspondence membrane–region is
one-to-one, that is why we sometimes use interchangeably these terms.

Usually, the membranes are identified by labels from a given set of labels. In
Figure 1, we use numbers, starting with number 1 assigned to the skin mem-
brane (this is the standard labelling, but the labels can be more informative
“names” associated with the membranes). Also, in the figure the labels are
assigned in a one-to-one manner to membranes, but this is possible only in the
case of membrane structures which cannot grow (indefinitely), otherwise several

24

membranes should have the same label (we will see later such cases). Due to the
membrane–region correspondence, we identify by the same label a membrane
and its associated region.

t¢¢
¢
¢¢T

T
T
TTr

t

¡
¡

¡¡

t
t tt
1

2 3
4

6

8 9

@
@

@@
¡

¡
¡

¡t
@

@
@

@t
5 7

Figure 2: The tree describing the membrane structure from Figure 1

Clearly, a hierarchical structure of membranes can be represented by a rooted
tree; Figure 2 gives the tree which describes the membrane structure from Fig-
ure 1. The root of the tree is associated with the skin membrane and the
leaves with the elementary membranes. In this way, graph–theoretic notions
are brought into the stage, such as the distance in the tree, the level of a mem-
brane, the height/depth of the membrane structure, as well as terminology, such
as parent/child membrane, ancestor, etc.

Directly suggested by the tree representation is the symbolic representation
of a membrane structure, by strings of labelled matching parentheses. For in-
stance, a string corresponding to the structure from Figure 1 is the following
one:

[1 [2]2 [3]3 [4 [5]5 [6 [8]8 [9]9]6 [7]7]4]1.

An important aspect should now be noted: the membranes from the same
level can float around, that is, the tree representing the membrane structure
is not oriented; in terms of parentheses expressions, two sub-expressions placed
at the same level represent the same membrane structure. For instance, in the
previous case, the expression

[
1

[
3

]
3

[
4

[
6

[
8

]
8

[
9

]
9

]
6

[
7

]
7

[
5

]
5

]
4

[
2

]
2

]
1

is an equivalent representation of the same membrane structure.

7 Evolution Rules and the Way of Using Them

In the basic variant of P systems, each region contains a multiset of symbol-
objects, which correspond to the chemicals swimming in a solution in a cell

25

compartment; these chemicals are considered here as unstructured, that is why
we describe them by symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. Actually, there are
three main types of rules: (1) multiset-rewriting rules (one uses to call them,
simply, evolution rules), (2) communication rules, and (3) rules for handling
membranes.

In this section we present the first type of rules. They correspond to the
chemical reactions possible in the compartments of a cell, hence they are of the
form u → v, where u and v are multisets of objects. However, in order to make
the compartments cooperate, we have to move objects across membranes, and to
this aim we add target indications to the objects produced by a rule as above (to
the objects from multiset v). These indications are: here, in, out, with the mean-
ing that an object having associated the indication here remains in the same
region, one having associated the indication in goes immediately into a directly
lower membrane, non-deterministically chosen, and out indicates that the object
has to exit the membrane, thus becoming an element of the region surrounding
it. An example of evolution rule is aab → (a, here)(b, out)(c, here)(c, in) (this
is the first of the rules considered in Section 4, with target indications associ-
ated with the objects produced by rule application). After using this rule in a
given region of a membrane structure, two copies of a and one b are consumed
(removed from the multiset of that region), and one copy of a, one of b, and
two of c are produced; the resulting copy of a remains in the same region, and
the same happens with one copy of c (indications here), while the new copy of b
exits the membrane, going to the surrounding region (indication out), and one
of the new copies of c enters one of the child membranes, non-deterministically
chosen. If no such child membrane exists, that is, the membrane with which
the rule is associated is elementary, then the indication in cannot be followed,
and the rule cannot be applied. In turn, if the rule is applied in the skin region,
then b will exit into the environment of the system (and it is “lost” there, as it
can never come back). In general, the indication here is not specified (an object
without an explicit target indication is supposed to remain in the same region
where the rule is applied).

It is important to note that in this initial type of systems we are going to
describe we do not provide similar rules for the environment, as we do not care
about the objects present there; later we will consider types of P systems where
also the environment takes part in the system evolution.

A rule as above, with at least two objects in its left hand side, is said to
be cooperative; a particular case is that of catalytic rules, of the form ca → cv,
where c is an object (called catalyst) which assists the object a to evolve into
the multiset v; rules of the form a → v, where a is an object, are called non-
cooperative.

The rules can also have the form u → vδ, where δ denotes the action of
membrane dissolving: if the rule is applied, then the corresponding membrane
disappears and its contents, object and membranes alike, are left free in the
surrounding membrane; the rules of the dissolved membrane disappear at the

26

same time with the membrane. The skin membrane is never dissolved.
The communication of objects through membranes reminds the fact that

the biological membranes contain various (protein) channels through which the
molecules can pass (in a passive way, due to concentration difference, or in
an active way, with a consumption of energy), in a rather selective manner.
However, the fact that the communication of objects from a compartment to a
neighboring compartment is controlled by the “reaction rules” is mathematically
attractive, but not quite realistic from a biological point of view, that is why
there were also considered variants where the two processes are separated: the
evolution is controlled by rules as above, without target indications, and the
communication is controlled by specific rules (by symport/antiport rules).

It is also worth noting that evolution rules are stated in terms of names
of objects, while their application/execution is done using copies of objects –
remember the example from Section 4, where the multiset a5b2c6 was processed
by a rule of the form aab → a(b, out)c(c, in), which, in the maximally parallel
manner, is used twice, for the two possible sub-multisets aab.

We have arrived in this way at the important feature of P systems, concerning
the way of using the rules. The key phrase in this respect is: in the maximally
parallel manner, non-deterministically choosing the rules and the objects.

More specifically, this means that we assign objects to rules, non-
deterministically choosing the objects and the rules, until no further assignment
is possible. More mathematically stated, we look to the set of rules, and try to
find a multiset of rules, by assigning multiplicities to rules, with two properties:
(i) the multiset of rules is applicable to the multiset of objects available in the
respective region, that is, there are enough objects in order to apply the rules
a number of times as indicated by their multiplicities, and (ii) the multiset is
maximal, no further rule can be added to it (because of the lack of available
objects).

Thus, an evolution step in a given region consists in finding a maximal
applicable multiset of rules, removing from the region all objects specified in
the left hand of the chosen rules (with the multiplicities as indicated by the
rules and by the number of times each rule is used), producing the objects from
the right hand sides of rules, and then distributing these objects as indicated
by the targets associated with them. If at least one of the rules introduces the
dissolving action δ, then the membrane is dissolved, and its contents become
part of the immediately upper membrane – provided that this membrane was
not dissolved at the same time, a case where we stop in the first upper membrane
which was not dissolved (at least the skin remains intact).

8 A Formal Definition of a Transition P System

Systems based on multiset-rewriting rules as above are usually called transition
P systems, and we preserve here this terminology (although “transitions” are
present in all types of systems).

Of course, when presenting a P system we have to specify: the alphabet of

27

objects (a usual finite non-empty alphabet of abstract symbols identifying the
objects), the membrane structure (it can be represented in many ways, but the
most used one is by a string of labelled matching parentheses), the multisets of
objects present in each region of the system (represented in the most compact
way by strings of symbol-objects), the sets of evolution rules associated with
each region, as well as the indication about the way the output is defined – see
below.

Formally, a transition P system (of degree m) is a construct of the form

Π = (O,C, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm, io),

where:

1. O is the (finite and non-empty) alphabet of objects,

2. C ⊂ O is the set of catalysts,

3. µ is a membrane structure, consisting of m membranes, labelled with
1, 2, . . . ,m; one says that the membrane structure, and hence the system,
is of degree m,

4. w1, w2, . . . , wm are strings over O representing the multisets of objects
present in the regions 1, 2, . . . ,m of the membrane structure,

5. R1, R2, . . . , Rm are finite sets of evolution rules associated with the regions
1, 2, . . . ,m of the membrane structure,

6. io is either one of the labels 1, 2, . . . ,m, and then the respective region
is the output region of the system, or it is 0, and then the result of a
computation is collected in the environment of the system.

The rules are of the form u → v or u → vδ, with u ∈ O+ and v ∈ (O×Tar)∗,
where1 Tar = {here, in, out}. The rules can be cooperative (with u arbitrary),
non-cooperative (with u ∈ O−C), or catalytic (of the form ca → cv or ca → cvδ,
with a ∈ O − C, c ∈ C, v ∈ ((O − C) × Tar)∗); note that the catalysts never
evolve and never change the region, they only help the other objects to evolve.

A possible restriction about the region io in the case when it is an internal
one is to consider only regions enclosed by elementary membranes for output
(that is, io should be the label of an elementary membrane of µ).

In general, the membrane structure and the multisets of objects from its
compartments identify a configuration of a P system. The initial configura-
tion is given by specifying the membrane structure and the multisets of ob-
jects available in its compartments at the beginning of a computation, hence
(µ,w1, . . . , wm). During the evolution of the system, by means of applying the
rules, both the multisets of objects and the membrane structure can change. We
will see how this is done in the next section; here we conclude with an example

1By V ∗ we denote the set of all strings over an alphabet V , the empty string λ included,
and by V + we denote the set V ∗ − {λ}, of all non-empty strings over V .

28

of a P system, represented in a pictorial way in Figure 3. It is important to
note that adding to the initial configuration the set of rules, placed in the cor-
responding regions, we have a complete and concise presentation of the system
(the indication of the output region can also be added in a suitable manner, for
instance, writing “output” inside it).

'

&

$

%

'

&

$

%

'

&

$

%

1

2
3

afc

a → ab

a → bδ

f → ff

b → d d → de

ff → f cf → cdδ

e → (e, out) f → f

Figure 3: The initial configuration of a P system, rules included

9 Defining Computations and Results of Com-
putations

In their basic variant, membrane systems are synchronous devices, in the sense
that a global clock is assumed, which marks the time for all regions of the
system. In each time unit a transformation of a configuration of the system
– we call it transition – takes place by applying the rules in each region, in a
non-deterministic and maximally parallel manner. As explained in the previous
sections, this means that the objects to evolve and the rules governing this
evolution are chosen in a non-deterministic way, and this choice is “exhaustive”
in the sense that, after the choice was made, no rule can be applied in the same
evolution step to the remaining objects.

A sequence of transitions constitutes a computation. A computation is suc-
cessful if it halts, it reaches a configuration where no rule can be applied to the
existing objects, and the output region io still exists in the halting configuration
(in the case when io is the label of a membrane, it can be dissolved during the

29

computation). With a successful computation we can associate a result in vari-
ous ways. If we have an output region specified, and this is an internal region,
then we have an internal output: we count the objects present in the output
region in the halting configuration and this number is the result of the computa-
tion. When we have io = 0, we count the objects which leave the system during
the computation, and this is called external output. In both cases the result is
a number. If we distinguish among different objects, then we can have as the
result a vector of natural numbers. The objects which leave the system can also
be arranged in a sequence according to the moments when they exit the skin
membrane, and in this case the result is a string (if several objects exit at the
same time, then all their permutations are accepted as a substring of the result).
Note that non-halting computations provide no output (we cannot know when a
number is “completely computed” before halting), and if the output membrane
is dissolved during the computation, then the computation aborts, no result is
obtained (of course, this makes sense only in the case of the internal output).

A possible extension of the definition is to consider a terminal set of objects,
T ⊆ O, and to count only the copies of objects from T , discarding the objects
from O − T present in the output region. This allows some additional leeway
in constructing and “programming” a P system, because we can ignore some
auxiliary objects (e.g., the catalysts).

Because of the non-determinism of the application of rules, starting from an
initial configuration, we can get several successful computations, hence several
results. Thus, a P system computes (one also uses to say generates) a set of
numbers (or a set of vectors of numbers, or a language, depending on the way
the output is defined). The case when we get a language is important in view of
the qualitative difference between the “loose” data structure we use inside the
system (vectors of numbers) and the data structure of the result, strings, where
we also have a “syntax”, a positional information.

For a given system Π we denote by N(Π) the set of numbers computed by
Π in the above way. When we consider the vector of multiplicities of objects
from the output region, we write Ps(Π). In turn, in the case when we take as
(external) output the strings of objects leaving the system, then we denote the
language of these strings by L(Π).

Let us illustrate the previous definitions by examining the computations of
the system from Figure 3 – with the output region being the environment.

We have objects only in the central membrane, that with label 3, hence only
here we can apply rules. Specifically, we can repeatedly apply the rule a → ab
in parallel with f → ff , and in this way the number of copies of b grows each
step by one, while the number of copies of f is doubled in each step. If we do
not apply the rule a → bδ (again in parallel with f → ff), which dissolves the
membrane, then we can continue in this way forever. Thus, in order to ever
halt, we have to dissolve membrane 3. Assume that this happens after n ≥ 0
steps of using the rules a → ab and f → ff . When membrane 3 is dissolved, its
contents (n + 1 copies of b, 2n+1 copies of f , and one copy of the catalyst c) are
left free in membrane 2, which now can start using its rules. In the next step,
all objects b become d. Let us examine the rules ff → f and cf → cdδ. The

30

second rule dissolves membrane 2, hence passes the contents of this membrane
to membrane 1. If among the objects which arrive in membrane 1 there is at
least one copy of f , then the rule f → f from region 1 can be used forever
and the computation never stops; moreover, if the rule ff → f is used at least
once in parallel with the rule cf → cdδ, then at least one copy of f is present.
Therefore, the rule cf → cdδ should be used only if region 2 contains only one
copy of f (note that, because of the catalyst, the rule cf → cdδ can be used
only for one copy of f). This means that the rule ff → f was used always
for all pairs of f available, that is, in each step the number of copies of f is
divided by 2. This is already done once in the step when all copies of b become
d, and will be done from now on as long as at least two copies of f are present.
Simultaneously, in each step each d produces one copy of e. This process can
continue until we get a configuration with only one copy of f present; at that
step we have to use the rule cf → cdδ (the rule ff → f is no longer applicable),
hence also membrane 2 is dissolved. Because we have applied the rule d → de,
in parallel for all copies of d (there are n + 1 such copies), during n + 1 steps,
we have (n + 1)(n + 1) copies of e, n + 2 copies of d (one of them was produced
by the rule cf → cdδ), and one copy of c present in the skin membrane of the
system (the unique membrane still present). The objects e are sent out, and
the computation halts. Therefore, we compute in this way the number (n+1)2,
for some n ≥ 0, that is, N(Π) = {n2 | n ≥ 1}.

10 Using Symport and Antiport Rules

The multiset rewriting rules correspond to reactions taking place in the cell,
inside the compartments. However, an important part of the cell activity is
related to the passage of substances through membranes, and one of the most
interesting ways to handle this trans-membrane communication is by coupling
molecules. The process by which two molecules pass together across a membrane
(through a specific protein channel) is called symport; when the two molecules
pass simultaneously through a protein channel, but in opposite directions, the
process is called antiport.

We can formalize these operations in an obvious way: (ab, in) or (ab, out)
are symport rules, stating that a and b pass together through a membrane,
entering in the former case and exiting in the latter; similarly, (a, out; b, in) is an
antiport rule, stating that a exits and at the same time b enters the membrane.
Separately, neither a nor b can cross a membrane – unless we have a rule of the
form (a, in) or (a, out), called, for uniformity, uniport rule.

Of course, we can generalize these types of rules, by considering symport
rules of the form (x, in), (x, out), and antiport rules of the form (z, out;w, in),
where x, z, w are multisets of arbitrary size; one uses to say that |x| is the weight
of a symport rule as above, and max(|z|, |w|) is the weight of the antiport rule2.

Now, such rules can be used in a P system instead of the target indications
here, in, out: we consider multiset rewriting rules of the form u → v (or u →

2By |u| we denote the length of the string u ∈ V ∗, for any alphabet V .

31

vδ) without target indications associated with the objects from v, as well as
symport/antiport rules for communicating the objects among compartments.
Such systems, called evolution–communication P systems, were considered in
[23] (for various restricted types of rules of the two forms).

Here we do not go into this direction, but we stay closer both to the chrono-
logical evolution of the domain, and to the mathematical minimalism, and we
check whether we can compute using only communication, that is, only symport
and antiport rules. This leads to considering one of the most interesting classes
of P systems, which we formally introduce here.

A P system with symport/antiport rules is a construct of the form

Π = (O,µ,w1, . . . , wm, E,R1, . . . , Rm, io),

where:

1. O is the alphabet of objects,

2. µ is the membrane structure (of degree m ≥ 1, with the membranes la-
belled in a one-to-one manner with 1, 2, . . . ,m),

3. w1, . . . , wm are strings over O representing the multisets of objects present
in the m compartments of µ in the initial configuration of the system,

4. E ⊆ O is the set of objects supposed to appear in the environment in
arbitrarily many copies,

5. R1, . . . , Rm are the (finite) sets of rules associated with the m membranes
of µ,

6. io ∈ H is the label of a membrane of µ, which indicates the output region
of the system.

The rules from R can be of two types, symport rules and antiport rules, of
the forms as specified above.

The rules are used in the non-deterministic maximally parallel manner. In
the usual way, we define transitions, computations, and halting computations.
The number (or the vector of multiplicities) of objects present in region io
in the halting configuration is said to be computed by the system along that
computation; the set of all numbers (resp., vectors or numbers) computed in
this way by Π is denoted by N(Π) (resp., by Ps(Π)).

We remark here a new component of the system, the set E of objects which
are present in the environment in arbitrarily many copies; because we only move
objects across membranes and because we start with finite multisets of objects
present in the system, we cannot increase the number of objects necessary for
the computation if we do not provide a supply of objects, and this can be done
by considering the set E. Because the environment is supposed inexhaustible,
the objects from E are supposed inexhaustible, irrespective how many of them
are brought into the system, arbitrarily many remain outside.

32

Another new feature is that this time the rules are associated with the mem-
branes, not with the regions, and this is related to the fact that each rule governs
the communication through a specific membrane.

The P systems with symport/antiport rules have a series of attractive char-
acteristics: they are fully based on biological types of multiset processing rules;
the environment takes a direct part into the evolution of the system; the com-
putation is done only by communication, no object is changed, the objects only
move across membranes; no object is created or destroyed, hence the conser-
vation low is observed (as given in the previous sections, this is not valid for
multiset rewriting rules, because, for instance, rules of the form a → aa or
ff → f are allowed, but by using some dummy objects d available in arbi-
trarily many copies, we can take care of the conservation low by writing, e.g.,
da → aa and ff → fd).

11 An Example (Like a Proof. . .)

Because P systems with symport/antiport rules constitute an important class
of P systems, it is worth considering an example; however, instead of a simple
example (actually, it is not very easy to find simple symport/antiport systems
computing non-trivial sets of numbers), we give directly a general construction,
for simulating a register machine. In this way, we also introduce one of the
widely used proof techniques for the universality results in this area. (Of course,
the biologist reader can safely skip this section.)

Informally speaking, a register machine consists of a specified number of
counters (also called registers) which can hold any natural number, and which
are handled according to a program consisting of labelled instructions; the coun-
ters can be increased or decreased by 1 – the decreasing being possible only if a
counter holds a number greater than or equal to 1 (we say that it is non-empty)
–, and checked whether they are non-empty.

Formally, a (non-deterministic) register machine is a device M =
(m,B, l0, lh, R), where m ≥ 1 is the number of counters, B is the (finite) set
of instruction labels, l0 is the initial label, lh is the halting label, and R is the
finite set of instructions labelled (hence uniquely identified) by elements from
B (R is also called the program of the machine). The labelled instructions are
of the following forms:

– l1 : (add(r), l2, l3), 1 ≤ r ≤ m (add 1 to counter r and go non-
deterministically to one of the instructions with labels l2, l3),

– l1 : (sub(r), l2, l3), 1 ≤ r ≤ m (if counter r is not empty, then subtract
1 from it and go to the instruction with label l2, otherwise go to the
instruction with label l3),

– lh : halt (the halt instruction, which can only have the label lh).

A counter machine generates a k-dimensional vector of natural numbers in
the following manner: we distinguish k counters as output counters (without

33

loss of generality, they can be the first k counters), and we start computing
with all m counters being empty, with the instruction labelled by l0; if the
computation reaches the instruction lh : halt (we say that it halts), then the
values of counters 1, 2, . . . , k is the vector generated by the computation. The
set of all vectors from Nk generated in this way by M is denoted by Ps(M).
If we want to generate only numbers (1-dimensional vectors), then we have the
result of a computation in counter 1, and the set of numbers computed by M in
this way is denoted by N(M). It is known (see [73], [40]) that non-deterministic
counter machines with k+2 counters can compute any set of Turing computable
k-dimensional vectors of natural numbers (hence machines with three counters
generate exactly the family of Turing computable sets of numbers).

Now, a register machine can be easily simulated by a P system with sym-
port/antiport rules. The idea is illustrated in Figure 4, where we have rep-
resented the initial configuration of the system, the rules associated with the
unique membrane, as well as the set E, of objects present in the environment.

'

&

$

%

1
l0

E = {ar | 1 ≤ r ≤ m} ∪ {l, l′, l′′, l′′′, liv | l ∈ B}

(l1, out; arl2, in)
(l1, out; arl3, in)

}
for l1 : (add(r), l2, l3)

(l1, out; l′1l
′′
1 , in)

(l′1ar, out; l′′′1 , in)
(l′′1 , out; liv1 , in)
(livl′′′1 , out; l2, in)
(livl′1, out; l3, in)

for l1 : (sub(r), l2, l3)

(lh, out) for (lh : halt)

Figure 4: An example of symport/antiport P system

The value of each register r is represented by the multiplicity of object
ar, 1 ≤ r ≤ m, in the unique membrane of the system. The labels from B,
as well as primed version of them, are also objects of our system. We start
with the unique object l0 present in the system. In the presence of a label–
object l1 we can simulate the corresponding instruction l1 : (add(r), l2, l3) or
l1 : (sub(r), l2, l3).

The simulation of an add instruction is clear, so that we discuss only a
sub instruction. The object l1 exits the system in exchange of the two objects
l′1l

′′
1 (rule (l1, out; l′1l

′′
1 , in)). In the next step, if any copy of ar is present in the

34

system, then l′1 has to exit (rule (l′1ar, out; l′′′1 , in)), thus diminishing the number
of copies of ar by one, and bringing inside the object l′′′1 ; if no copy of ar is
present, which corresponds to the case when the register r is empty, then the
object l′1 remains inside. Simultaneously, rule (l′′1 , out; liv1 , in) is used, bringing
inside the “checker” liv1 . Depending on what this object finds in the system,
either l′′′1 or l′1, it introduces the label l2 or l3, respectively, which corresponds
to the correct continuation of the computation of the register machine.

When the halt instruction is reached, that is, the object lh is introduced,
this object is just expelled into the environment and the computation stops.

Clearly, the (halting) computations in Π directly correspond to (halting)
computations in M , hence N(M) = N(Π).

12 A Large Panoply of Possible Extensions

We have mentioned the flexibility and the versatility of the formalism of mem-
brane computing, and we have already mentioned several types of systems,
making use of several types of rules, with the output of a computation defined
in various ways. We continue here in this direction, by presenting a series of
possibilities of changing the form of rules and/or the way of using them. The
motivation for such extensions comes both from biology, from the natural desire
to capture more and more biological facts, and from mathematics and computer
science, from the desire to have more powerful or more elegant models.

First, let us return to the basic target indications, here, in, out, associated
with the objects produced by rules of the form u → v; here and out precisely
indicate the region where the object is to be placed, but in introduces a degree
of non-determinism in the case when there are several inner membranes. This
non-determinism can be avoided by indicating also the label of the target mem-
brane, that is, using target indications of the form inj , where j is a label. An
intermediate possibility, more specific than in but not completely unambiguous
like inj , is to assign both to objects and to membranes electrical polarizations,
+,−, and 0. The polarizations of membranes are given from the beginning (or
can be changed during the computation), the polarization of objects is intro-
duced by rules, using rules of the form ab → c+c−(d0, tar). The charged objects
have to go to any lower level membrane of opposite polarization, while objects
with neutral polarization either remain in the same region or get out, depending
on the target indication tar ∈ {here, out} (this is the case with d in the previous
rule).

A spectacular generalization, considered recently in [33], is to use indications
inj , for j being any membrane from the system, hence the object is “teleported”
immediately at any distance in the membrane structure; also, commands of the
form in∗ and out∗ were used, with the meaning that the object should be sent
to (one of) the elementary membranes from the current membrane or to the
skin region, respectively, no matter how far the target is.

Then, we have considered the membrane dissolution action, represented by
the symbol δ; we may imagine that such an action decreases the thickness of

35

the membrane from the normal thickness, 1, to 0. A dual action can be also
used, of increasing the thickness of a membrane, from 1 to 2. We indicate this
action by τ . Assume that δ also decreases the thickness from 2 to 1, that the
thickness cannot have other values than 0 (membrane dissolved), 1 (normal
thickness), and 2 (membrane impermeable), and that when both δ and τ are
introduced simultaneously in the same region, by different rules, then their
actions cancel, the thickness of the membrane does not change. In this way,
we get a nice possibility to control the work of the system: if a rule introduces
a target indication in or out and the membrane which has to be crossed by
the respective object has thickness 2, hence it is non-permeable, then the rule
cannot be applied.

Let us look now to the catalysts. In the basic definition they never change
their state or their place, like ordinary objects do. A “democratic” decision
is to let also the catalysts to evolve – in certain limits. Thus, mobile catalysts
were proposed, moving across membranes like any object (but still not changing
themselves). Then, the catalysts were allowed to change their state, for instance,
oscillating between c and c̄. Such a catalyst is called bi-stable, and the natural
generalization is to consider k-stable catalysts, allowed to change along k given
forms. Note that in all cases the number of catalysts is not changed, we do
not produce or remove catalysts (unless if they leave the system), and this is
important in view of the fact that the catalysts are in general used for inhibiting
the parallelism (a rule ca → cv can be used simultaneously at most as many
times as many copies of c are present).

There are several possibilities for controlling the use of rules, in general,
leading to a decrease of the degree of non-determinism of a system. For instance,
a mathematically and biologically motivated possibility, is to consider a priority
relation on the set of rules from a given region, in the form of a partial order
relation on the set of rules from that region. This corresponds to the fact that
certain reactions/reactants are more active than others, and can be interpreted
in two ways: as a competition for reactants/objects, or in a strong sense. In
the latter sense, if a rule r1 has priority over a rule r2 and r1 can be applied,
then r2 cannot be applied, irrespective whether rule r1 leaves objects which it
cannot use. For instance, if r1 : ff → f and r2 : cf → cdδ, like in the example
from Section 8, and the current multiset is fffc, because rule r1 can be used,
consuming two copies of f , we do not also use the second rule for the remaining
fc. In the weak interpretation of the priority, this is allowed: the rule with
the maximal priority takes as many objects as possible, and, if still there are
remaining objects, then the next rule in the decreasing order of priority is used
for as many objects as possible, and, if still remain unused objects, we continue
in this way until no further rule can be added to the multiset of applicable rules.

Also directly coming from bio-chemistry are the rules with promoters and
inhibitors, written in the form u → v|z and u → v|¬z, respectively, where u, v, z
are multisets of objects; in the case of promoters, the rule u → v can be used
in a given region only if all objects from z are present in the same region, and
they are different from the (copies of) objects from u; in the inhibitors case, no
object from z should be present in the region, and different from the objects

36

from u. The promoting objects can evolve at the same time by other rules, or
by the same rule u → v, but by another instance of it (e.g., a → b|a can be
used twice in a region containing two copies of a, with each instance of a → b|a
acting on one copy of a and promoted by the other copy, but cannot be used at
all in a region where a appears only once).

An interesting combination of rewriting–communication rules are those con-
sidered in [92], where rules of the following three forms are proposed: a →
(a, tar), ab → (a, tar1)(b, tar2), ab → (a, tar1)(b, tar2)(c, come), where a, b, c
are objects, and tar, tar1, tar2 are target indications of the forms here, in, out
or even inj , with j the label of a membrane. Such a rule just moves objects
from a region to another one, with the mentioning that rules of the third type
can be used only in the skin region and the indication (c, come) means that a
copy of c is brought into the system from the environment. Clearly, these rules
are different from the symport/antiport rules; for instance, the two objects ab
from a rule ab → (a, tar1)(b, tar2) start from the same region, and can go into
different directions, one up and one down in the membrane structure.

We have left in the end one of the most general type of rules, introduced in
[15] under the name of boundary rules, directly capturing the idea that many
reactions take place on the inner membranes of a cell, maybe depending on the
contents of both the inner and the outer region adjacent to that membrane.
These rules are of the form xu[

i
vy → xu′[

i
v′y, where x, u, u′, v, v′, y are mul-

tisets of objects and i is the label of a membrane. The meaning is that in the
presence of the objects from x outside and of objects from y inside the mem-
brane i, the multiset u from outside changes to multiset u′ and, simultaneously,
the multiset v from inside is changed into v′. The generality of this kind of rules
is apparent – and it can be decreased by imposing various restrictions on the
involved multisets.

There also are other variants considered in the literature, especially in what
concerns the way of controlling the use the rules, but we do not continue here
in this direction.

13 P Systems with Active Membranes

We pass now to presenting a class of P systems, which, together with the ba-
sic transition systems and the symport/antiport systems, is one of the three
central types of cell-like P systems considered in membrane computing. Like
in the above case of boundary rules, they start from the observation that the
membranes play an important role in the reactions which take place in a cell,
and, moreover, they can evolve themselves, either changing their characteristics
or even getting divided.

Especially this last idea has motivated the class of P systems with active
membranes, which are constructs of the form

Π = (O,H, µ,w1, . . . , wm, R),

where:

37

1. m ≥ 1 (the initial degree of the system);

2. O is the alphabet of objects;

3. H is a finite set of labels for membranes;

4. µ is a membrane structure, consisting of m membranes having initially
neutral polarizations, labelled (not necessarily in a one-to-one manner)
with elements of H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed
in the m regions of µ;

6. R is a finite set of developmental rules, of the following forms:

(a) [
h
a → v]

e

h
,

for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes, but not directly involving
the membranes, in the sense that the membranes are neither taking
part in the application of these rules nor are they modified by them);

(b) a[
h

]
e1

h
→ [

h
b]

e2

h
,

for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(in communication rules; an object is introduced in the membrane,
possibly modified during this process; also the polarization of the
membrane can be modified, but not its label);

(c) [
h
a]

e1

h
→ [

h
]
e2

h
b,

for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(out communication rules; an object is sent out of the membrane,
possibly modified during this process; also the polarization of the
membrane can be modified, but not its label);

(d) [
h
a]

e

h
→ b,

for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);

(e) [
h
a]

e1

h
→ [

h
b]

e2

h
[
h
c]

e3

h
,

for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label,
possibly of different polarizations; the object specified in the rule is
replaced in the two new membranes by possibly new objects; the
remaining objects are duplicated and may evolve in the same step by
rules of type (a)).

The objects evolve in the maximally parallel manner, used by rules of type
(a) or by rules of the other types, and the same is true at the level of membranes,
which evolve by rules of types (b)− (e). Inside each membrane, the rules of type

38

(a) are applied in the parallel way, with each copy of an object being used by
only one rule of any type from (a) to (e). Each membrane can be involved in
only one rule of types (b), (c), (d), (e) (the rules of type (a) are not considered
to involve the membrane where they are applied). Thus, in total, the rules are
used in the usual non-deterministic maximally parallel manner, in a bottom-up
way (first we use the rules of type (a), and then the rules of other types; in
this way, in the case of dividing membranes, in the newly obtained membranes
we duplicate the result of using first the rules of type (a)). Also as usual, only
halting computations give a result, in the form of the number (or the vector) of
objects expelled into the environment during the computation.

The set H of labels has been specified because it is also possible to allow
the change of membrane labels. For instance, a division rule can be of the more
general form

(e′) [
h1

a]
e1

h1
→ [

h2
b]

e2

h2
[
h3

c]
e3

h3
,

for h1, h2, h3 ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O.

The change of labels can also be considered for rules of types (b) and (c).
Also, we can consider the possibility of dividing membranes in more than two
copies, or even of dividing non-elementary membranes (in such a case, all inner
membranes are duplicated in the new copies of the membrane).

It is important to note that in the case of P systems with active membranes,
the membrane structure evolves during the computation, not only by decreasing
the number of membranes, due to dissolution operations (rules of type (d)), but
also increasing the number of membranes, by division. This increase can be
exponential in a linear number of steps: using successively a division rule, due
to the maximal parallelism, in n steps we get 2n copies of the same membrane.
This is one of the most investigated ways of obtaining an exponential working
space in order to trade time for space and solve computationally hard problems
(typically NP-complete problems) in a feasible time (typically polynomial or
even linear).

Some details can be found in Section 20, but we illustrate here the way of
using membrane division in such a framework by an example dealing with the
generation of all 2n truth–assignments possible for n propositional variables.

Assume that we have the variables x1, x2, . . . , xn; we construct the following

39

system, of degree 2:

Π = (O,H, µ,w1, w2, R),

O = {ai, ci, ti, fi | 1 ≤ i ≤ n} ∪ {check},
H = {1, 2},
µ = [

1
[
2

]
2
]
1
,

w1 = λ,

w2 = a1a2 . . . anc1,

R = {[2ai]
0
2 → [2ti]

0
2[2fi]

0
2 | 1 ≤ i ≤ n}

∪ {[2ci → ci+1]
0
2 | 1 ≤ i ≤ n − 1}

∪ {[
2
cn → check]

0
2
, [

2
check]

0
2
→ check[

2
]
+
2
}.

We start with the objects a1, . . . , an in the inner membrane and we divide
this membrane, repeatedly, by means of rules [2ai]

0
2 → [2ti]

0
2[2fi]

0
2; note that

the object ai used in each step is non-deterministically chosen, but each division
replaces that object by ti (for true) in one membrane and with fi (for false) in
the other membrane, hence after n steps the obtained configuration is the same
irrespective which was the order of expanding the objects. Specifically, we get
2n membranes with label 2, each one containing a truth–assignment for the n
variables. Actually, simultaneously with the division, we have to use the rules of
type (a) which make evolve the “counter” c, hence at each step we increase by
one the subscript of c. Therefore, when all variables are expanded, we get the
object check in all membranes (the rule of type (a) is used first, and after that
the result is duplicated in the newly obtained membranes). In step n + 1, this
object exits each copy of membrane 2, changing its polarization to positive – this
object is meant to signal the fact that the generation of all truth–assignments
is completed, and we can start checking the truth values of the (clauses of a)
propositional formula.

The previous example was chosen also for showing that the polarizations of
membranes are not used during generating the truth–assignments, but it might
be useful after that – and, up to now, this is the case in all polynomial time
solutions to NP-complete problems obtained in this framework, in particular,
for solving SAT (satisfiability of propositional formulas in the conjunctive normal
form). This is an important open problem in this area: whether or not the po-
larizations can be avoided. This can be done if other ingredients are considered,
such as label changing or division of non-elementary membranes, but without
adding such features the best result obtained so far is that from [3] where it is
proved that the number of polarizations can be reduced to two.

40

14 A Panoply of Possibilities for Having a Dy-
namical Membrane Structure

Membrane dissolving and dividing are only two of the many possibilities of
handling the membrane structures. One of the early investigated additional
possibility is membrane creation, based on rules of the form a → [

h
v]

h
, where a

is an object, v is a multiset of objects, and h is a label from a given set of labels.
Using such a rule in a membrane j, we create a new membrane, with label h,
having inside the objects specified by v. Because we know the label of the new
membrane, we know the rules which can be used in its region (a “dictionary” of
possible membranes is given, specifying the rules to be used in any membrane
with labels in a given set). Because rules for handling membranes are of a more
general interest (e.g., for applications), we illustrate them in Figure 5, where
the reversibility of certain pairs of operations is also made visible.

For instance, converse to membrane division can be considered the operation
of merging the contents of two membranes; formally, we can write such a rule
in the form [

h1
a]

h1
[
h2

b]
h2

→ [
h3

c]
h3

, where a, b, c are objects and h1, h2, h3 are
labels (we have considered the general case, where the labels can be changed).

Actually, the merging operation can be considered also as the reverse of
the separation operation, formalized as follows: let K ⊆ O be a set of ob-
jects; a separation with respect to K is done by a rule of the form [

h1
]
h1

→
[
h2

K]
h2

[
h3
¬K]

h3
, with the meaning that the contents of membrane h1 is split

into two membranes, with labels h2 and h3, the first one containing all objects
from K and the second one containing all objects which are not in K.

Simple to formalize are also the operations of endocytosys and exocytosys (we
use these general names, although in biology there are distinctions depending
on the size of the objects and the number of objects moved – phagocytosys,
picocytosys, etc.).

For instance, [
h1

a]
h1

[
h2

]
h2

→ [
h2

[
h1

b]
h1

]
h2

, for h1, h2 ∈ H, a, b ∈ V , is an
endocytosys rule, stating that an elementary membrane labelled h1 enters the
adjacent membrane labelled h2, under the control of object a; the labels h1 and
h2 remain unchanged during this process, however, the object a may be modified
to b during the operation. Similarly, the rule [

h2
[
h1

a]
h1

]
h2

→ [
h1

b]
h1

[
h2

]
h2

,
for h1, h2 ∈ H, a, b ∈ V , indicates an exocytosys operation: an elementary
membrane labelled h1 is sent out of a membrane labelled h2, under the control
of object a; the labels of the two membranes remain unchanged, but the object
a from membrane h1 may be modified during this operation. In the case of
endocytosys, membrane h2 can be a non-elementary one.

Finally, let us mention the operation of gemmation, by which a membrane
is created inside a membrane h1 and sent to a membrane with label h2; the
moving membrane is dissolved inside the target membrane h2 thus releasing
its contents there. In this way, multisets of objects can be transported from a
membrane to another one in a protected way: the enclosed objects cannot be
processed by the rules of the regions through which the travelling membrane
passes. The travelling membrane is created with a label of the form @h2

, which

41

indicates that it is a temporary membrane, having to get dissolved inside the
membrane with label h2. Corresponding to the situation from biology, in [17],
[18] one considers only the case where the membranes h1, h2 are adjacent, and
directly placed in the skin membrane, but the operation can be generalized.

Â
Á

¿
À

® ©ª ® ©ªu

h1 h2

i

-

Â
Á

¿
À

® ©ª
¶
µ

³
´® ©ª

i
h1 h2

u
@h2-

¾
½

»
¼

® ©ª ® ©ª® ©ªi
h1

u
@h2

h2

-gemmation

¾
½

»
¼

²± °̄²± °̄
i

h1
a

h2

'
&

$
%

¾
½

»
¼

²± °̄
i

h2

h1

b

Â
Á

¿
À

²± °̄²± °̄
i

h1 h2

a

-endocytosys

¾
exocytosys

Â
Á

¿
À

²± °̄ ²± °̄b c

i

h2 h3

Â
Á

¿
À

²± °̄
i

h1

a
-divide/separe

¾
merge

¾
½

»
¼

i

b

Â
Á

¿
À

²± °̄
i

h

a
-dissolution

¾
creation

Figure 5: Membrane handling operations

Anyway, a gemmation rule is of the form a → [
@h2

u]
@h2

, where a is an

object and u a multiset of objects (but it can be generalized by creating several
travelling membranes at the same time, with different destinations); the result
of applying such a rule is as illustrated in the bottom of Figure 5, with the
important mentioning that the crossing of one membrane takes one time unit
(it is supposed that the travelling membrane finds the shortest path from the
region where it is created to the target region).

Several other operations with membranes were considered, e.g., in the con-
text of applications to linguistics, [13], as well as in [57], and in other papers,
but we do not enter into further details here.

42

15 Structuring the Objects

In the previous classes of P systems, the objects were considered atomic, iden-
tified only by their name, but in a cell many chemicals are complex molecules
(e.g., proteins, DNA molecules, other large macro-molecules), whose structure
can be described by strings or more complex data, such as trees, arrays, etc.
Also from a mathematical point of view is natural to consider P systems with
string–objects.

Such a system has the form

Π = (V, T, µ,M1, . . . ,Mm, R1, . . . , Rm),

where V is the alphabet of the system, T ⊆ V is the terminal alphabet, µ is the
membrane structure (of degree m ≥ 1), M1, . . . ,Mm are finite sets of strings
present in the m regions of the membrane structure, and R1, . . . , Rm are finite
sets of string–processing rules associated with the m regions of µ.

We have given here the system in the general form, with a specified terminal
alphabet (we say that the system is extended; if V = T , then the system is said
to be non-extended), and without specifying the type of rules. These rules can
be of various forms, but here we consider only two cases: rewriting and splicing.

In a rewriting P system, the string-objects are processed by rules of the form
a → u(tar), where a → u is a context-free rule over the alphabet V and tar
is one of the target indications here, in, out. When such a rule is applied to a
string x1ax2 in a region i, we obtain the string x1ux2, which is placed in region
i, in any inner region, or in the surrounding region, depending on whether tar
is here, in, or out, respectively. The strings which leave the system do not come
back; if they are composed only of symbols from T , then they are considered as
generated by the system, and included in the language L(Π).

There are several differences from the previous classes of P systems: we work
with sets of string-objects, not with multisets; in order to introduce a string in
the language L(Π) we do not need to have a halting computation, because the
strings do not change after leaving the system; each string is processed by only
one rule (the rewriting is sequential at the level of strings), but in each step all
strings from all regions which can be rewritten by local rules are rewritten by
one rule.

In a splicing P system, we splicing rules as those from DNA computing (see
[49], [85]), that is, of the form u1#u2$u3#u4, where u1, u2, u3, u4 are strings
over V . For four strings x, y, z, w ∈ V ∗ and a rule r : u1#u2$u3#u4, we write

(x, y) `r (z, w) if and only if x = x1u1u2x2, y = y1u3u4y2,

z = x1u1u4y2, w = y1u3u2x2,

for some x1, x2, y1, y2 ∈ V ∗.

We say that we splice x, y at the sites u1u2, u3u4, respectively, and the result
of the splicing (obtained by recombining the fragments obtained by cutting the
strings as indicated by the sites) are the strings z, w.

43

In our case we add target indications to the two resulting strings, that is,
we consider rules of the form r : u1#u2$u3#u4(tar1, tar2), with tar1, tar2 one
of here, in, out. The meaning is as standard: after splicing the strings x, y from
a given region, the resulting strings z, w are moved to the regions indicated by
tar1, tar2, respectively. The language generated by such a system consists again
of all strings over T sent into the environment during the computation, without
considering only halting computations.

We do not give here an example of a rewriting or a splicing P system,
but we pass to introducing an important extension of rewriting rules, namely,
rewriting with replication, [60]. In such systems, the rules are of the form a →
(u1, tar1)||(u2, tar2)|| . . . ||(un, tarn), with the meaning that by rewriting a string
x1ax1 we get n strings, x1u1x2, x1u2x2, . . . , x1unx2, which have to be moved in
the regions indicated by targets tar1, tar2, . . . , tarn, respectively. In this case we
work again with halting computations, and the motivation is that if we do not
impose the halting condition, then the strings x1uix2 evolve completely indepen-
dently, hence we can replace the rule a → (u1, tar1)||(u2, tar2)|| . . . ||(un, tarn)
with n rules a → (ui, tari), 1 ≤ i ≤ n, without changing the language; that is,
replication makes a difference only in the halting case.

The replicated rewriting is important for the possibility to replicate strings,
thus enlarging the workspace, and indeed, this is one of the frequently used
ways to generate an exponential workspace in linear time, used then for solving
computationally hard problems in polynomial time.

Besides these types of rules for string processing, also other kinds of rules
were used, such as insertion and deletion, context adjoining in the sense of
Marcus contextual grammars [76], splitting, conditional concatenation, and so
on, sometimes with motivations from biology, where several similar operations
can be found, e.g., at the genome level.

16 Tissue–Like P Systems

We pass now to consider a very important generalization of the membrane struc-
ture, passing from the cell-like structure, described by a tree, to a tissue–like
structure, with the membranes placed in the nodes of an arbitrary graph (which
corresponds to the complex communication networks established among adja-
cent cells, by making their protein channels to cooperate, moving molecules
directly from one cell to another cell, [64]). Actually, in the basic variant of
tissue–like P systems, this graph is a virtually total one, what matters is the
communication graph, dynamically defined during the computation. In short,
several (elementary) membranes – also called cells – are freely placed in a com-
mon environment; they can communicate either with each other or with the
environment by symport/antiport rules. Specifically, we consider antiport rules
is of the form (i, x/y, j), where i, j are labels of cells or, at most one, is zero,
identifying the environment, and x, y are multisets of objects. The meaning is
that the multiset x is moved from i to j, at the same time with moving the mul-
tiset y from j to i. If one of the multisets x, y is empty, then we have, in fact, a

44

symport rule. Therefore, the communication among cells is done either directly,
in one step, or indirectly, through the environment: one cell throws some ob-
jects out and other cells can take these objects, in the next step or later. As in
symport/antiport P systems, the environment contains a specified set of objects
in arbitrarily many copies. A computation develops as standard, starting from
the initial configuration and using the rules in the non-deterministic maximally
parallel manner. When halting, we count the objects from a specified cell, and
this is the result of the computation.

The graph plays a more important role in so-called tissue-like P systems with
channel-states, [41], which are constructs of the form

Π = (O, T,K,w1, . . . , wm, E, syn, (s(i,j))(i,j)∈syn, (R(i,j))(i,j)∈syn, io),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects, K
is the alphabet of states (not necessarily disjoint of O), w1, . . . , wm are strings
over O representing the initial multisets of objects present in the cells of the
system (it is assumed that we have m cells, labelled with 1, 2, . . . ,m), E ⊆ O
is the set of objects present in arbitrarily many copies in the environment,
syn ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . ,m}, i 6= j} is the set of links among cells (we call
them synapses; 0 indicates the environment) such that for i, j ∈ {0, 1, . . . ,m}
at most one of (i, j), (j, i) is present in syn, s(i,j) is the initial state of the
synapse (i, j) ∈ syn, R(i,j) is a finite set of rules of the form (s, x/y, s′), for
some s, s′ ∈ K and x, y ∈ O∗, associated with the synapse (i, j) ∈ syn, and,
finally, io ∈ {1, 2, . . . ,m} is the output cell.

We note the restriction that there is at most one synapse among two given
cells, and the synapse is given as an ordered pair (i, j), with which a state
from K is associated. The fact that the pair is ordered does not restrict the
communication among the two cells (or between a cell and the environment), be-
cause we work here in the general case of antiport rules, specifying simultaneous
movements of objects in the two directions of a synapse.

A rule of the form (s, x/y, s′) ∈ R(i,j) is interpreted as an antiport rule
(i, x/y, j) as above, acting only if the synapse (i, j) has the state s; the applica-
tion of the rule means (1) moving the objects specified by x from cell i (from the
environment, if i = 0) to cell j, at the same time with the move of the objects
specified by y in the opposite direction, as well as (2) changing the state of the
synapse from s to s′.

The computation starts with the multisets specified by w1, . . . , wm in the m
cells; in each time unit, a rule is used on each synapse for which a rule can be
used (if no rule is applicable for a synapse, then no object passes over it and its
state remains unchanged). Therefore, the use of rules is sequential at the level of
each synapse, but it is parallel at the level of the system: all synapses which can
use a rule must do it (the system is synchronously evolving). The computation
is successful if and only if it halts and the result of a halting computation is
the number of objects from T present in cell io in the halting configuration (the
objects from O − T are ignored when considering the result). The set of all
numbers computed in this way by the system Π is denoted by N(Π). Of course,

45

also vectors can be computed, by considering the multiplicity of objects from T
present in cell io in the halting configuration.

A still more elaborated class of systems, called population P systems, were
investigated in the last time in a series of papers by F. Bernardini and M.
Gheorghe – see, e.g., [14] – with motivations related to the dynamics of cells
in skin-like tissues, populations of bacteria, colonies of ants. These systems
are highly dynamical; not only the links between cells, corresponding to the
channels from the previous model, with states assigned to these channels, can
change during the evolution of the system, but also the cells can change their
name, can disappear (get dissolved) and can divide, thus producing new cells;
these new cells inherit, in a well specified sense, the links with the neighboring
cells of the parent cell. The generality of this model makes it rather attractive for
applications in areas as those mentioned above, related to tissues, populations
of bacteria, etc.

17 Neural–Like P Systems

The next step in enlarging the model of tissue-like P systems is to consider
more complex cells, for instance, moving the states from the channels between
cells to the cells themselves – still preserving the network of synapses. This
last term directly suggests the neural motivation of these attempts, aiming to
capture something from the intricate structure of neural networks, of the way the
neurons are linked and cooperate in the most efficient computer ever invented,
the human brain.

We do not recall here the formal definition of a neural-like P system, but we
refer to [82] for details, and here we only present the general idea behind these
systems.

We again use a population of cells (each one identified by its label) linked
by a specified set of synapses. This time, each cell has at every moment a state
from a given finite set of states, a contents, in the form of a multiset of objects
from a given alphabet of objects, and a set of rules for processing these objects.

The rules are of the form sw → s′(x, here)(y, go)(z, out), where s, s′ are
states and w, x, y, z are multisets of objects; in state s, the cell consumes the
multiset w and produces the multisets x, y, z; the objects from multiset x remain
in the cell, those of multiset y have to be communicated to the cells towards
which there are synapses starting in the current cell; a multiset z, with the
indication out, is allowed to appear only in a special cell, which is designated
as the output cell, and for this cell, the use of the previous rule entails sending
the objects of z to the environment.

The computation starts with all cells in specified initial states, with initially
given contents, and proceeds by processing the multisets from all cells, simulta-
neously, according to the local rules, redistributing the obtained objects along
synapses, and sending a result into the environment through the output cell; a
result is accepted only when the computation halts.

Because of the use of states, there are several possibilities of processing the

46

multisets of objects from each cell. In the minimal mode, a rule is chosen and
applied once to the current pair state–multiset. In the parallel mode, a rule
is chosen, e.g., sw → s′w′, and used in the maximally parallel manner: the
multiset w is identified in the cell contents, in the maximal manner, and the
rule is used for processing all these instances of w. Finally, in the maximal mode,
we apply in the maximally parallel manner all rules of the form sw → s′w′, that
is, with the same states s and s′ (note the difference with the parallel mode,
where in each step we choose a rule and we use only this rule as many times as
possible).

Then, there also are three possibilities to move the objects between cells (of
course, we only move objects produced by rules in multisets with the indication
go). Assume that we have applied a rule sw → s′(x, here)(y, go) in a given cell
i. In the spread mode, the objects from y are non-deterministically distributed
to all cells j such that (i, j) is a synapse of the system. In the one mode, all
the objects from y are sent to one cell j, again provided that the synapse (i, j)
exists. Finally, we can also replicate the objects of y and each object from y is
sent to all cells j such that (i, j) is an available synapse – this is the replicative
mode.

Note that the states ensure a powerful way to control the work of the sys-
tem, that the parallel and maximal modes are efficient ways to process the
multisets, and that the replicative mode of distributing the objects provides the
possibility of increasing exponentially the number of objects, in linear time. All
together, these features make the neural-like P system both very powerful and
very efficient computing devices. However, this class of P systems still waits
for a systematic investigation – maybe starting with questioning their very def-
inition, and changing this definition in such a way to capture more realistic
brain–like features.

18 Other Ways of Using a P System; P Au-
tomata

In all previous sections we have considered the various types of P systems as
generative devices: starting from an initial configuration, because of the non-
determinism of using the rules we can proceed along various computations, at
the end of which we get a result; in total, all successful computations provide a
set of numbers, of vectors or numbers, or a language (set of strings), depending
on the way the result of a computation is defined. This approach, grammar
oriented, is only one possibility, mathematically attractive and important theo-
retically, but not useful from a practical point of view, when dealing with specific
problems to solve and specific functions to compute. However, a P system can
be used also for computing functions and for solving problems (in a standard
algorithmic manner).

Actually, besides the generative approach, there are two other general (re-
lated) ways of using a P system: in the accepting mode, and in the transducer

47

mode. In both cases, an input is provided to the system, in a way depending on
the type of systems at hand. For instance, in a symbol-object P system, besides
the initial multisets present in the regions of the membrane structure, we can
introduce a multiset w0 in a specified region, just adding the objects of w0 to
the objects present in that region. In the string case, a string can be added,
possibly inserted in one of the existing strings. The computation proceeds, and
if it halts, then we say that the input is accepted (or recognized). In the trans-
ducer mode, we do not only have to halt, but we also collect an output, from a
specified output region, internal to the system or the environment.

Now, an important distinction appears, between systems which behave de-
terministically (in each moment, at most one transition is possible, hence either
the computation stops, or it continues in a unique mode), and those which work
in a non-deterministic way. Such a distinction does not makes much sense in
the generative mode, especially if only halting computations provide a result, at
their end: such a system can generate only a single result. In the case of comput-
ing functions or solving problems (e.g., decidability problems), the determinism
is obligatory.

Again a distinction is in order: actually, we are not interested in the way the
system behaves, deterministically or non-deterministically, but in the uniqueness
and the reliability of the result. If, for instance, we ask whether or not a
propositional formula in conjunctive normal form is satisfiable or not, we do
not care how the result is obtained, but we want to make sure that it is the
right one: yes or no. Whether or not the truth–assignments were created as in
the example from Section 13, expanding the variables in a random order, is not
relevant, important is that after n steps we get the same configuration. This
brings into the stage the important notion of confluence. A system is strongly
confluent if, starting from the initial configuration and behaving we-do-not-
care-how, after a while it reaches a configuration from where the computation
continues in a deterministic way. Because we are only interested in the result of
computations (e.g., in the answer, yes or no, to a decidability problem), we can
relax the previous condition, to a weak confluence property: irrespective how
the system works, it always halts and all halting computations provide the same
result. These notions will be essentially invoked when discussing the efficiency
of P systems, as in Section 20.

Here let us consider in some details the accepting mode of using a P system.
Given, for instance, a transition P system Π, let us denote by Na(Π) the set of all
numbers accepted by Π, in the following sense: we introduce an, for a specified
object a, into a specified region of Π, and we say that n is accepted if and only if
there is a computation of Π, starting from this augmented initial configuration,
which halts. In the case of systems taking objects from the environment, such as
the symport/antiport or the communicative ones [92], we can consider that the
system accepts/recognizes the sequence of objects taken from the environment
during a halting computation (if several objects are brought into the system
at the same time, then all their permutations are accepted as substrings of the
accepted string). Similar strategies can be followed for all types of systems,
tissue-like and neural-like included (but P automata were first introduced in

48

the symport/antiport case, in [37] – see also [39]).
The above set Na(Π) was defined in general, for non-deterministic systems,

but, clearly, in the accepting mode the determinism can be imposed (the non-
determinism is moved to the environment, to the “user”, which provides an
input, unique, but non-deterministically chosen, from which the computation
starts). Note that the example of a P system with symport/antiport rules
from Section 11 works in the same manner for an accepting register machine (a
number is introduced in the first register and it is accepted if and only if the
computation halts; in such a case, the add instructions can be deterministic,
that is, with labels l2, l3 identical (one simply writes l1 : (add(r), l2), with the
continuation unique), and in this case the P system itself is deterministic.

19 Universality

The initial goal of membrane computing was to define computability models
inspired from the cell biology, and indeed a large part of the investigations in
this area was devoted to producing computing devices and examining their com-
puting power, in comparison with the standard models in computability theory,
Turing machines and their restricted variants. As it turns out, most of the
considered classes of P systems are equal in power with Turing machines. In
a rigorous manner, we have to say that they are Turing complete (or compu-
tationally complete), but because the proofs are always constructive, starting
the constructions from these proofs from universal Turing machines or from
equivalent devices, we obtain universal P systems (able to simulate any other P
system of the given type, after introducing a “code” of the particular system as
an input in the universal one – the precise definition should be given for every
particular type of systems). That is why we speak about universality results,
and not about computational completeness.

All classes of systems considered above, whether cell-like, tissue-like, or
neural-like, with symbol-objects or string-objects, working in the generative
or the accepting modes, of course, with certain combinations of features, are
known to be universal. The cell turns out to be a very powerful “computer”,
both when standing alone and in tissues.

In general, for P systems working with symbol-objects, these universality
results are proved by simulating computing devices which are known to be
universal, and which either work with numbers or do not essentially use the
positional information from strings. This is true/possible for register machines,
matrix grammars (in the binary normal form), programmed grammars, regu-
larly controlled grammars, graph-controlled grammars (but not for arbitrary
Chomsky grammars and for Turing machines, which can be used only in the
case of string-objects). The example from Section 11 illustrates a universality
proof for the case of P systems with symport/antiport rules (with rules of a
sufficiently large weight – see below stronger results from this point of view).

We do not enter here in other details, than specifying some notations which
are already standard in membrane computing and, after that, mentioning some

49

universality results of a particular interest.
As for notations, the family of sets N(Π) of numbers (we keep from here

the symbol N) generated by P systems of a specified type (we keep P), work-
ing with symbol-objects (O), having at most m membranes, and using fea-
tures/ingredients from a given list is denoted by NOPm(list-of-features). If we
compute sets of vectors, then we write PsOPm(. . .), with Ps coming from
“Parikh set”. When the systems work in the accepting mode, one writes
NaOPm(. . .), and when string-objects are used, one replaces N with L (from
“languages”) and O with S (from “strings”), thus obtaining families LSPm(. . .).
The case of tissue-like systems is indicated by adding the letter t before P , thus
obtaining NOtPm(. . .), while for neural-like systems one uses instead the letter
n. When the number of membranes is not bounded, the subscript m is replaced
by ∗, and this is a general convention, used also for other parameters.

Now, in what concerns the list of features, they can be taken from an endless
pool: using cooperative rules is indicated by coo, catalytic rules are indicated
by cat, with the mentioning that the number of catalysts matters, hence we use
catr in order to indicate that we use systems with at most r catalysts; bi-stable
catalysts are indicated by 2cat (2catr, if at most r catalysts are used); similarly,
mobile catalysts are indicated by Mcat. When using a priority relation, we write
pri, for the actions δ, τ we write simply δ, τ . Membrane creation is represented
by mcre, endocytosys and exocytosys operations are indicated by endo, exo,
respectively. In the case of P systems with active membranes, one directly lists
the types of rules used, from (a) to (e), as defined and denoted in Section 13.

For systems with string-objects, one write rew, repld, spl for indicating that
one uses rewriting rules, replicated rewriting rules (with at most d copies of each
string produced by replication), splicing rules, respectively.

In the case of (cell-like or tissue-like) systems using symport/antiport rules,
we have to specify the maximal weight of the used rules, and this is done by writ-
ing symp, antiq, meaning that symport rules of weight at most p and antiport
rules of weight at most q are allowed.

There are many other features, with notations of the same type (as mnemonic
as possible), which we do not recall here. Sometimes, when it is important to
show in the name of the discussed family that a specific feature fe is not allowed,
one uses to write nFe – for instance, nPri for not using priorities (note the
capitalization of the initial name of the feature), nδ, etc.

Specific examples of families of numbers (we do not consider here also sets
of vectors or languages, although, as we have said above, a lot of universality
results are known for all cases) appear in the few universality results which we
recall below. In these results, NRE denotes the family of Turing computable
sets of numbers (the notation comes from the fact that these numbers are the
length sets of recursively enumerable languages, those generated by Chomsky
type-0 grammars, or many types of regulated rewriting grammars, and rec-
ognized by Turing machines). The family NRE is also the family of sets of
numbers generated/recognized by register machines. When dealing with vec-
tors of numbers, hence with the Parikh images of languages (or with the sets of
vectors generated/recognized by register machines), we write PsRE.

50

Here are some universality results (for the proofs, see the mentioned papers):

1. NRE = NOP1(cat2), [38].

2. NRE = NOP3(sym1, anti1) = NOP3(sym2, anti0), [4].

3. NRE = NOP3((a), (b), (c)), [65].

4. NRE = NOP9(endo, exo), [59].

5. NRE = NSP3(repl2), [61].

All results above hold true also for vectors of numbers.
In all these results, the number of membranes sufficient for obtaining the

universality is pretty small (the equality NRE = NOP9(endo, exo) was only
recently proven and it is very probable that it will be improved in the number
of membranes). Actually, in all cases when the universality holds (and the
code of a particular system is introduced in a universal system in such a way
that the membrane structure is not modified), the hierarchy on the number of
membranes collapses, because a number of membranes as large as the degree of
the universal system suffices.

Still, “the number of membranes matters”, as we read already in the title
of [54]: there are (sub-universal) classes of P systems for which the number of
membranes induces an infinite hierarchy of families of sets of numbers (see also
[55]).

20 Solving Computationally Hard Problems in
Polynomial Time

The computational power (the “competence”) is only one of the important ques-
tions to be dealt with when defining a new computing model. The other fun-
damental question concerns the computing efficiency, the resources used for
solving problems. In general, the research in natural computing is especially
concerned with this issue. Because P systems are parallel computing devices,
it is expected that they can solve hard problems in an efficient manner – and
this expectation is confirmed for systems provided with ways for producing an
exponential workspace in a linear time.

We have discussed above three basic ways to construct such an exponential
space in cell-like P systems, namely, membrane division (the same effect has
the separation operation, as well as other operations which replicate partially
or totally the contents of a membrane), membrane creation (combined with the
creation of exponentially many objects), and string replication. Similar possibil-
ities are offered by cell division in tissue-like systems and by objects replication
in neural-like systems. Also the possibility to use a pre-computed exponential
workspace, unstructured and non-active (e.g., with the regions containing no
object) was considered.

51

In all these cases polynomial or pseudo–polynomial solutions to NP-
complete problems were obtained. The first problem addressed in this con-
text was SAT [81], [79] (the solution was improved in several respects in other
subsequent papers), but similar solutions are reported in the literature for the
Hamiltonian Path problem, the Node Covering problem, the problem of invert-
ing one-way functions, the Subset-sum, and the Knapsack problems (note that
the last two are numerical problems, where the answer is not of the yes/no
type, as in decidability problems), and for several other problems. Details can
be found in [82], [87], as well as in the web page of the domain, [102].

Roughly speaking, the framework for dealing with complexity matters is
that of accepting P systems with input: a family of P systems of a given type
is constructed starting from a given problem, and an instance of the problem is
introduced as an input in such systems; working in a deterministic mode (or a
confluent mode: some non-determinism is allowed, provided that the branching
converges after a while to a unique configuration, or, in the case of the weak con-
fluence, all computations stop in a determined time and give the same result),
in a given time one of the answers yes/no is obtained, in the form of specific
objects sent to the environment. The family of systems should be constructed
in a uniform mode (starting from the size of problem instances) by a Turing ma-
chine, working a polynomial time. A more relaxed framework is that where a
semi-uniform construction is allowed: carried out in polynomial time by a Tur-
ing machine, but starting from the instance itself to be solved (the condition to
have a polynomial time construction ensures the “honesty” of the construction:
the solution to the problem cannot be found during the construction phase).

This direction of research is very active at the present moment. More and
more problems are considered, the membrane computing complexity classes are
refined, characterizations of the P6=NP conjecture were obtained in this frame-
work, improvements are looked for. An important recent result concerns the
fact that PSPACE was shown to be included in PMCD, the family of prob-
lems which can be solved in polynomial time by P systems with the possibility
of dividing both elementary and non-elementary membranes. The PSPACE-
complete problem used in this proof was QSAT (see [92], [5] for details).

There also are many open problems in this area. We have mentioned already
the intriguing question whether polynomial solutions to NP-complete problems
can be obtained through P systems with active membranes without polariza-
tions (and without label changing possibilities of other additional features). In
general, the borderline between efficiency (the possibility to solve NP-complete
problems in polynomial time) and non-efficiency is a challenging topic. Anyway,
we know that membrane division cannot be avoided (“Milano theorem”: a P
system without membrane division can be simulated by a Turing machine with
a polynomial slowdown, see [100], [101]).

52

21 Focusing on the Evolution

The computational power is of interest for theoretical computer science, com-
putational efficiency is of interest for practical computer science, but none of
these is of a direct interest for biology. Actually, this last statement is not at
all correct: if a biologist is interested in simulating a cell – and this seems to
become a major concern of to-day biology, see [58], [53] and other sources –
then the generality of the model (its comparison with Turing machines and its
restrictions) is directly linked to the possibility of solving algorithmically ques-
tions about the model. Just an example: is a given configuration reachable
from the initial configuration? Imagine that the initial configuration represents
a healthy cell and we are interested whether a sickness state is ever reached.
Then, if both healthy and non-healthy configurations can be reached, the ques-
tion appears whether we can find the “bifurcation configurations”, and this is
again a reachability issue. The relevance of such a “purely theoretical” problem
is clear, and its answer directly depends on the generality (hence the power) of
the model. Then, of course, the time needed for answering the question is a
matter of computational complexity. So, both the power and the efficiency are,
indirectly, of interest also for biologists, so we (the biologists, too) should be
more careful when asserting that a given type of “theoretical” investigation is
not of interest for biology.

Still, the immediate concern of biological research is the evolution of biologi-
cal systems, their life, whatever this means, not the result of a specific evolution.
Otherwise stated, halting computations are of interest for computer science, of
direct interest for biology is the computation/evolution itself. Although mem-
brane computing was not intended initially to deal with such issues, a series of
recent investigations indicate a strong tendency towards considering P systems
as dynamical systems. This does not concern only the fact that, besides the rules
for object evolution, a more complete panoply of possibilities were imagined for
making also the membrane structure evolve, with specific developments in the
case of tissue-like and population P systems, where also the links between cells
are evolving, but this concerns especially the formulation of questions which
are typical for dynamical systems study. Trajectories, periodicity and pseudo-
periodicity, stability, attractors, basins, oscillations and many other concepts
were brought in the framework of membrane computing – and the enterprise
is not trivial, as these concepts were initially introduced in areas handled with
continuous mathematics tools (mainly differential equations). A real program
of defining discrete dynamical systems, with direct application to the dynamics
of P systems, was started by V. Manca and his collaborators; we refer to [19],
[68], [67], [15], etc. for details.

22 Recent Developments

Of course, the specification “recent” is risky, as it can soon become obsolete, but
still we want to mention here some directions of research and some results which

53

were not presented before – after just repeating the fact that topics such as com-
plexity classes and polynomial solutions to hard problems, dynamical systems
approaches, population P systems (in general, systems dealing with populations
of cells, as in tissue-like or neural-like systems) are of a strong current interest
which will probably lead to significant theoretical and practical results. To these
trends we can add another general, and not very structured yet, topic: using
non-crisp mathematics, handling uncertainty by means of probabilistic, fuzzy
sets, rough sets theories.

However, we want here to also point out a few more precise topics.
One of them concerns the role of time in P systems. The synchronization

and the existence of a global clock are too strong assumptions (from a biological
point of view). What about P systems where there exists no internal clock, and
all rules have different times to get applied? This can mean both that the
duration needed by a rule to get applied can differ from the duration of another
rule, and, the extreme possibility, that the duration is not known at all. In the
first case, we can have a timing function, assigning durations to rules, in the
second case even such an information is missing (e.g., a rule a → v should wait
for a rule c → ba to be completed in order to have an available a to process).
How the power of a system depends on the timing function? Are there time-free
systems, which generate the same set of numbers irrespective which is the time
function which associates durations with its rules? Such questions are addressed
in a series of papers by M. Cavaliere and D. Sburlan; see e.g., [27], [28].

Another powerful idea explored by M. Cavaliere and his collaborators is that
of coupling a simple bio-inspired system, Sys, such as a P system without a large
computing power, with an observer Obs, a finite state machine which analyzes
the configurations of the system Sys along the evolutions of the system; from
each configuration either a symbol is produced or nothing (that is, the “result”
of that configuration is the empty string λ); in a stronger variant, the observer
can also reject the configuration and hence the system evolution, trashing it.
The couple (Sys,Obs), for various simple systems and multiset processing finite
automata, proved to be a very powerful computing device, universal even for
very weak systems Sys. Details can be found in [24], [25].

An idea recently explored is that of trying to bound the number of objects
used in a P system, and still computing all Turing computable numbers. The
question can be seen as “orthogonal” on the usual questions concerning the
number of membranes and the size of rules, as, intuitively, one of these param-
eters should be left free in order to codify and handle an arbitrary amount of
information by using a limited number of objects. The first results of this
type were given in [84] and they are surprising: in formal terms, we have
NRE = NOP4(obj3, sym∗, anti∗) (P systems with four membranes and sym-
port and antiport rules of arbitrary weight are universal even when using only
three objects). In turn, two objects (but without a bound on the number of
membranes) are sufficient in order to generate all sets of vectors computed by
so-called (see [46]) partially blind counter machines (for sets of numbers the
result is not so interesting, because partially blind counter machines accept
only semilinear sets of numbers, while the sets of vectors they accept can be

54

non-semilinear).
Other interesting topics recently investigated which we only list here concern

the reversibility of computations in P systems [63], energy accounting (associ-
ating quanta of energy to objects or to rules, handled during the computation)
[43], [42], [62], relations with grammar systems and with colonies [83], descrip-
tional complexity, non-discrete multisets [74], [34].

We close this section by mentioning the notion of the Sevilla carpet intro-
duced in [31], which proposes a way to describe the time-and-space complexity
of a computation in a P system by considering the two–dimensional table of
all rules used in each time unit of a computation. This corresponds to the
Szilard language from language theory, with the complication now that we use
several rules in the same step, and each rule is used several times. Considering
all the information concerning the rules we can get a global evaluation of the
complexity of a computation – as nicely illustrated, for instance, in [90] and
[47].

23 Applications; The Attractiveness of Mem-
brane Computing as a Modelling Framework

Finally, let us shortly discuss some applications of membrane computing – start-
ing however with a general discussion about the features of this area of research
which make it attractive for applications in several disciplines, especially for
biology.

First, there are several keywords which are genuinely proper to membrane
computing and which are of interest for many applications: distribution (with
the important system-part interaction, emergent behavior, non-linearly result-
ing from the composition of local behaviors), discrete mathematics (continuous
mathematics, especially systems of differential equations, has a glorious history
of applications in many disciplines, such as astronomy, physics, meteorology,
but it failed to prove adequate for linguistics, and cannot cover more than local
processes in biology because of the complexity of processes and, in many cases,
their imprecise character; then, a basic question is whether the biological reality
is of a continuous nature or of a discrete nature – as languages proved to be,
which the second possibility ruling out the usefulness of many tools from contin-
uous mathematics), algorithmicity (by definition, P systems are computability
models, of the same type as Turing machines or other classic representations of
algorithms, hence easy to be simulated on a computer), scalability/extensibility
(this is one of the main difficulties of using differential equations in biology),
transparency (multiset rewriting rules are nothing else than reaction equations
as customarily used in chemistry and bio-chemistry, without any “mysterious”
notation and, behind the notation, “mysterious” behavior), parallelism (a dream
of computer science, a common sense in biology), non-determinism (let us com-
pare the “program” of a P system, which is a set of instructions/rules, with the
only structure being that imposed by localization to regions, but without any

55

ordering/structure inside each region, with the rigid sequences of instructions
of programs written in usual programming languages), communication (with
the marvellous and still not completely understood way the life is coordinating
the many processes taking place in a cell, and in tissues, organs, organisms,
in contrast with the costly way of coordinating/synchronizing computations in
parallel electronic computing architectures, where the communication time be-
come prohibitive with the increase of the number of processors), and so on and
so forth.

Then, for biology, besides the easy understanding of the formalism and
the transparency of the (graphical and symbolic) representations, encouraging
should be also the simple observation that membrane computing emerged as a
bio-inspired research area, explicitly looking to the cell for finding computability
models (though, not looking initially for models of relevance for the biological
research), hence it is just natural to try to improve these models and use them
in the study of the very originating ground. This should be put in contrast with
the attempt to “force” models and tools developed in other scientific areas, e.g.,
in physics, to cover biological facts, presumably of a genuinely different nature
as that of the area for which these models and tools were created and proven to
be adequate/useful.

Coming back to the important distinction between continuous and discrete
tools, it should be emphasized that significant results can be obtained by com-
puter simulations of discrete data, in particular, of multisets. This has been
convincingly proven in many cases – see [94], [93], [95], [74], [68], [67] – and re-
minds of the assertion made in several places that cellular automata can be an
alternative/substitute for differential equations; comparing the rigid structure
of cellular automata with the flexibility of membrane systems we can safely infer
that if this assertion is valid for cellular automata, then it is still “more valid”
for P systems.

Now, in what concerns the applications themselves reported up to now,
they are developed at various levels. In many cases, what is actually used
is the language of membrane computing, having in mind three dimensions of
this aspect: (i) the long list of concepts either newly introduced, or related
in a new manner in this area, (ii) the mathematical formalism of membrane
computing, and (iii) the graphical language, the way to represent membranes,
cell-like structures, tissue-like structures. It is easy to illustrate each of these
three points, e.g., producing a list of concepts already mentioned in the present
paper, or recalling some of the stabilized notations (for instance, representing a
membrane by square brackets, with labels and possibly electrical charges, with
the multiset rewriting rules, the symport and antiport rules), but we only say
some words about the graphical language. Many ingredients are, in a great
extent, known: Euler–Wenn diagrams (here, without intersection and with a
unique superset, corresponding to the skin membrane), with labels assigned to
membranes, with multisets (not sets!) of objects placed inside, with arrows
describing the communication channels in the case of tissue-like and neural-like
systems; what is essentially new is that also the rules for the evolution of the
system are written in compartments in the case of multiset or string rewriting

56

rules, and near membranes in the case of symport/antiport and boundary rules
(which are associated with membranes). Thus, not only the state of the system
is displayed, but also the “evolution engine”, the rules. Also, the localization is
apparent, both for objects and rule.

However, this level of application/usefulness is only a preliminary, superficial
one. The next level is to use tools, techniques, results of membrane computing,
and here there appears an important question: to which aim? Solving problems
already stated, e.g., by biologists, in other terms and another framework, could
be an impressive achievement, and this is the most natural way to proceed – but
not necessarily the most efficient one, at least at the beginning. New tools can
suggest new problems, which either cannot be formulated in a previous frame-
work (in plain language, as it is the case in biology, whatever specialized the
specific jargon is, or using other tools, such as differential equations) or have
no chance to be solved in the previous framework. Problems of the first type
(already examined by biologists, mainly experimentally) concern, for instance,
correlations of processes, of the presence/absence of certain chemicals, their mul-
tiplicity (concentration, population) in a given compartment, their interaction,
while of the second type are topics related to the trajectories of bio-systems
when modelled as dynamical systems (e.g., a sequence of configurations can be
finite or infinite, while in the latter case it can be periodic, ultimately periodic,
almost periodic, quasi-periodic, etc., notions which are not yet present in the
index of notions of biological books).

Applications of all these types were reported in the literature of membrane
computing. As expected and as natural, most applications were carried out in
biology, but also applications in computer graphics (where the compartmental-
ization seems to add a significant efficiency to well-known techniques based on
L systems, [44]), linguistics (both as a representation language for various con-
cepts related to language evolution, dialogue, semantics [13], and making use of
the parallelism, in solving parsing problems in an efficient way [45]), manage-
ment (again, mainly at the level of the formalism and the graphical language,
see, e.g., [11], [12]), in devising sorting and ranking algorithms [7], handling 2D
structures [29], etc.

In turn, the applications in biology follow in most cases a scenario of the
following type: one examines a piece of reality, in general from the biochemistry
of the cell, one writes a P system modelling the respective process, one writes a
program simulating that system (or one uses one of the existing programs), and
one performs a large number of experiments with the program (this is much
cheaper than conducting laboratory experiments), tuning certain parameters,
and looking for the evolution of the system (usually, for the population of certain
objects). We do not recall any detail here, but we refer to the chapter of [82]
devoted to biological applications, as well as to the papers available in the
web page [102], and, especially, to the forthcoming volume [30]. Anyway, the
investigations are somewhat preliminary, but the progresses are obvious and
the hope is to have in the near future applications of an increased interest for
biologists.

This hope is supported also by the fact that more and more powerful sim-

57

ulations/implementations of various classes of P systems are available, with
better and better interfaces, which allow for the friendly interaction with the
program. We avoid to plainly say that we have “implementations” of P sys-
tems, because of the inherent non-determinism and the massive parallelism of
the basic model, features which cannot be implemented, at least in principle, on
the usual electronic computer – but which can be implemented on a dedicated,
reconfigurable, hardware, as done in [88], or on a local network, as reported
in [32] and [96]. This does not mean that simulations of P systems on usual
computers are not useful; actually, such programs were used in all biological
applications mentioned above, and can also have important didactic and re-
search applications. An overview of membrane computing software reported in
literature (some programs are available in the web page [102]) can be found in
[48].

24 Closing Remarks

The present paper should be seen only as a general overview of membrane
computing, with the choice of topics intended to be as pertinent as possible,
but, of course, not completely free of a subjective bias. The reader inter-
ested in further technical details, formal definitions, proofs, research topics
and open problems, or in details concerning the applications (and the soft-
ware behind them) is advised to consult the comprehensive web page from
http://psystems.disco.unimib.it. A complete bibliography of membrane
computing can be found there, with many papers available for downloading (in
particular, one can find there the proceedings volumes of the yearly Workshops
on Membrane Computing, as well as of the yearly Brainstorming Weeks on
Membrane Computing).

References

[1] L.M. Adleman: Molecular Computation of Solutions to Combinatorial
Problems. Science, 226 (November 1994), 1021–1024.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molec-
ular Biology of the Cell, 4th ed. Garland Science, New York, 2002.

[3] A. Alhazov, R. Freund: On the Efficiency of P Systems with Active Mem-
branes and Two Polarizations. In [72], 147–161.

[4] A. Alhazov, M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan: Com-
municative P Systems with Minimal Cooperation. In [72], 162–178.

[5] A. Alhazov, C. Mart́ın-Vide, L. Pan: Solving a PSPACE-Complete Prob-
lem by P Systems with Restricted Active Membranes. Fundamenta Infor-
maticae, 58, 2 (2003), 67–77.

58

[6] A. Alhazov, C. Mart́ın-Vide, Gh. Păun, eds.: Pre-Proceedings of Work-
shop on Membrane Computing, WMC 2003, Tarragona, Spain, July 2003.
Technical Report 28/03, Rovira i Virgili University, Tarragona, 2003.

[7] A. Alhazov, D. Sburlan: Static Sorting Algorithms for P Systems. In [70],
17–40.

[8] I.I. Ardelean: The Relevance of Biomembranes for P Systems. Funda-
menta Informaticae, 49, 1–3 (2002), 35–43.

[9] J.-P. Banâtre, A. Coutant, D. Le Métayer: A Parallel Machine for Multiset
Transformation and Its Programming Style. Future Generation Computer
Systems, 4 (1988), 133–144.

[10] J.-P. Banâtre, P. Fradet, D. Le Métayer: Gamma and the Chemical Re-
action Model: Fifteen Years After. In [21], 17–44.

[11] J. Bartosik: Paun’s Systems in Modeling of Human Resource Manage-
ment. Proc. Second Conf. Tools and Methods of Data Transformation,
WSU Kielce, 2004.

[12] J. Bartosik, W. Korczynski: Systemy membranowe jako modele hierar-
chicznych struktur zarzadzania. Mat. Pokonferencyjne Ekonomia, Infor-
matyka, Zarzadzanie. Teoria i Praktyka, Wydzial Zarzadzania AGH, Tom
II, AGH 2002.

[13] G. Bel Enguix, M.D. Jiménez-Lopez: Linguistic Membrane Systems and
Applications. In [30].

[14] F. Bernardini, M. Gheorghe: Population P Systems. Journal of Universal
Computer Science, 10, 5 (2004), 509–539.

[15] F. Bernardini, V. Manca: Dynamical Aspects of P Systems. BioSystems,
70, 2 (2003), 85–93.

[16] G. Berry, G. Boudol: The Chemical Abstract Machine. Theoretical Com-
puter Science, 96 (1992), 217–248.

[17] D. Besozzi: Computational and Modelling Power of P Systems. PhD The-
sis, Univ. degli Studi di Milano, 2004.

[18] D. Besozzi, C. Zandron, G. Mauri, N. Sabadini: P Systems with Gem-
mation of Mobile Membranes. Proc. ICTCS 2001, Torino, LNCS 2202 (A.
Restivo, S.R. Della Rocca, L. Roversi, eds.), Springer-Verlag, Berlin, 2001,
136–153.

[19] C. Bonanno, V. Manca: Discrete Dynamics in Biological Models. Roma-
nian Journal of Information Science and Technology, 5, 1-2 (2002), 45–67.

[20] C. Calude, Gh. Păun: Bio-Steps Beyond Turing. BioSystems, 2004.

59

[21] C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Process-
ing. Mathematical, Computer Science, and Molecular Computing Points
of View. Lecture Notes in Computer Science, 2235, Springer, Berlin, 2001.

[22] L. Cardelli: Brane Calculus. Proc. Computational Methods in Systems
Biology ’04, Springer, to appear.

[23] M. Cavaliere: Evolution-Communication P Systems. In [86], 134–145.

[24] M. Cavaliere, P. Leupold: Evolution and Observation – A New Way to
Look at Membrane Systems. In [70], 70–87.

[25] M. Cavaliere, P. Leupold: Evolution and Observation. A Non-Standard
Way to Generate Formal Languages. Theoretical Computer Science, 321,
2-3 (2004), 233–248.

[26] M. Cavaliere, C. Martin-Vide, Gh. Păun, eds.: Proceedings of the Brain-
storming Week on Membrane Computing, Tarragona, February 2003.
Technical Report 26/03, Rovira i Virgili University, Tarragona, 2003.

[27] M. Cavaliere, D. Sburlan: Time-Independent P Systems. In [72], 239–258.

[28] M. Cavaliere, D. Sburlan: Time and Synchronization in Membrane Sys-
tems. Fundamenta Informaticae, 64 (2005), 65–77.

[29] R. Ceterchi, R. Gramatovici, N. Jonoska, K.G. Subramanian: Generating
Picture Languages with P Systems. In [26], 85–100.

[30] G. Ciobanu, Gh. Păun, M.J. Pérez–Jiménez, eds.: Applications of Mem-
brane Computing. Springer, Berlin, 2005.

[31] G. Ciobanu, Gh. Păun, Gh. Ştefănescu: Sevilla Carpets Associated with
P Systems. In [26], 135–140.

[32] G. Ciobanu, G. Wenyuan. A P System Running on a Cluster of Comput-
ers. In [70], 123–139.

[33] L. Colson, N. Jonoska, M. Margenstern: λP Systems and Typed λ-
Calculus. In [72], 1–18.

[34] A. Cordón-Franco, F. Sancho-Caparrini: Approximating Non-Discrete P
Systems. In [72], 288–296.

[35] S. Crespi–Reghizzi, D. Mandrioli: Commutative Grammars. Calcolo, 13,
2 (1976), 173–189.

[36] E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun, G. Vaszil: Cells
in Environment: P Colonies. Submitted, 2004.

[37] E. Csuhaj-Varju, G. Vaszil: P Automata or Purely Communicating Ac-
cepting P Systems. In [86], 219–233.

60

[38] R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally Universal P
Systems Without Priorities: Two Catalysts Suffice. Theoretical Computer
Science, 2004.

[39] R. Freund, M. Oswald: A Short Note on Analysing P Systems. Bulletin
of the EATCS, 78 (2003), 231–236.

[40] R. Freund, A. Păun: Membrane Systems with Symport/Antiport Rules:
Universality Results. In [86], 270–287.

[41] R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-Like P Systems with
Channel-States. Brainstorming Week on Membrane Computing, Sevilla,
February 2004, TR 01/04 of Research Group on Natural Computing,
Sevilla University, 2004, 206–223, and Theoretical Computer Science,
2004, in press.

[42] P. Frisco: Theory of Molecular Computing. Splicing and Membrane Sys-
tems. PhD Thesis, Leiden University, The Netherlands, 2004.

[43] P. Frisco, S. Ji: Towards a Hierarchy of Info-Energy P Systems. In [86],
302–318.

[44] A. Georgiou, M. Gheorghe, F. Bernardini: Generative Devices Used in
Graphics. In [30].

[45] R. Gramatovici, G. Bel Enguix: Parsing with P Automata. In [30].

[46] S.A. Greibach: Remarks on Blind and Partially Blind One-Way Multi-
counter Machines. Theoretical Computer Science, 7 (1978), 311–324.

[47] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: On De-
scriptive Complexity of P Systems. In [72], 321–331.

[48] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. Available
Membrane Computing Software. In [30].

[49] T. Head: Formal Language Theory and DNA: An Analysis of the Genera-
tive Capacity of Specific Recombinant Behaviors. Bulletin of Mathematical
Biology, 49 (1987), 737–759.

[50] J. Hartmanis: About the Nature of Computer Science. Bulletin of the
EATCS, 53 (June 1994), 170–190.

[51] J. Hartmanis: On the Weight of Computation. Bulletin of the EATCS, 55
(Febr. 1995), 136–138.

[52] J. Hoffmeyer: Surfaces Inside Surfaces. On the Origin of Agency and Life.
Cybernetics and Human Knowing, 5, 1 (1998), 33–42.

[53] M. Holcombe: Computational Models of Cells and Tissues: Machines,
Agents and Fungal Infection. Briefings in Bioinformatics, 2, 3 (2001),
271–278.

61

[54] O.H. Ibarra: The Number of Membranes Matters. In [70], 218–231.

[55] O.H. Ibarra: On Membrane Hierarchy in P Systems. Theoretical Computer
Science, 2004.

[56] O.H. Ibarra: On Determinism Versus Nondeterminism in P Systems. Sub-
mitted, 2004.

[57] M. Ionescu, T.-O. Ishdorj: Replicative–Distribution Rules in P Systems
with Active Membranes. Proc. of ICTAC2004, First Intern. Colloq. on
Theoretical Aspects of Computing, Guiyang, China, 2004.

[58] H. Kitano: Computational Systems Biology. Nature, 420, 14 (2002), 206–
210.

[59] S.N. Krishna, Gh. Păun, P Systems with Mobile Membranes. Theoretical
Computer Science, 2005.

[60] S.N. Krishna, R. Rama: P Systems with Replicated Rewriting. Journal
of Automata, Languages and Combinatorics, 6, 3 (2001), 345–350.

[61] S.N. Krishna, R. Rama, H. Ramesh: Further Results on Contextual and
Rewriting P Systems. Fundamenta Informaticae, 64 (2005), 235–246.

[62] A. Leporati, C. Zandron, G. Mauri. Simulating the Fredkin Gate with
Energy-Based P systems. Journal of Universal Computer Science, 10, 5
(2004), 600–619.

[63] A. Leporati, C. Zandron, G. Mauri: Universal Families of Reversible P
Systems. Proc. Conf. Universal Machines and Computations 2004, Sankt
Petersburg, 2004.

[64] W.R. Loewenstein: The Touchstone of Life. Molecular Information, Cell
Communication, and the Foundations of Life. Oxford University Press,
New York, Oxford, 1999.

[65] M. Madhu, K. Krithivasan: Improved Results About the Universality of
P Systems. Bulletin of the EATCS, 76 (Febr. 2002), 162–168.

[66] V. Manca: String Rewriting and Metabolism. A Logical Perspective. In
Gh. Păun, ed.: Computing with Bio-Molecules. Theory and Experiments,
Springer, Singapore, 1998, 36–60.

[67] V. Manca, L. Bianco, F. Fontana: Evolution and Oscillation in P Systems:
Applications to Biological Phenomena. In [72], 63–84.

[68] V. Manca, G. Franco, G. Scollo: State Transition Dynamics. Basic Con-
cepts and Molecular Computing Perspectives. In M. Gheorghe. ed.: Molec-
ular Computational Models. Unconventional Approaches, Idea Group,
London, 2004.

62

[69] S. Marcus: Bridging P Systems and Genomics: A Preliminary Approach.
In [86], 371–376.

[70] C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds.:
Membrane Computing. International Workshop, WMC2003, Tarragona,
Spain, Revised Papers. Lecture Notes in Computer Science, 2933, Springer,
Berlin, 2004.

[71] C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıguez-Patón: Tissue P Sys-
tems. Theoretical Computer Science, 296, 2 (2003), 295–326.

[72] G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa,
eds.: Membrane Computing. International Workshop WMC5, Milan,
Italy, 2004. Revised Papers, Lecture Notes in Computer Science, 3365,
Springer, Berlin, 2005.

[73] M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, NJ, 1967.

[74] T.Y. Nishida: Simulations of Photosynthesis by a K-subset Transforming
System with Membranes. Fundamenta Informaticae, 49, 1-3 (2002), 249–
259.

[75] A. Păun, Gh. Păun: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing, 20, 3 (2002), 295–306.

[76] Gh. Păun: Marcus Contextual Grammars. Kluwer, Dordrecht, 1997.

[77] Gh. Păun: Computing with Membranes. Journal of Computer and System
Sciences, 61, 1 (2000), 108–143 (and Turku Center for Computer Science-
TUCS Report 208, November 1998, www.tucs.fi).

[78] Gh. Păun: Computing with Membranes – A Variant. International Jour-
nal of Foundations of Computer Science, 11, 1 (2000), 167–182.

[79] Gh. Păun: Computing with Membranes: Attacking NP-Complete Prob-
lems. In I. Antoniou, C.S. Calude, M.J. Dinneen, eds.: Unconventional
Models of Computation, Springer, London, 2000, 94–115.

[80] Gh. Păun: From Cells to Computers: Computing with Membranes (P
Systems). BioSystems, 59, 3 (2001), 139–158.

[81] Gh. Păun: P Systems with Active Membranes: Attacking NP-Complete
Problems. Journal of Automata, Languages and Combinatorics, 6, 1
(2001), 75–90.

[82] Gh. Păun: Computing with Membranes: An Introduction. Springer,
Berlin, 2002.

63

[83] Gh. Păun: Grammar Systems vs. Membrane Computing: A Preliminary
Approach. Workshop on Grammar Systems, MTA SZTAKI, Budapest,
2004, 225–245.

[84] Gh. Păun, J. Pazos, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón: Sym-
port/Antiport P Systems with Three Objects Are Universal. Fundamenta
Informaticae, 64 (2005), 345–358.

[85] Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing
Paradigms. Springer, Berlin, 1998.

[86] Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.: Membrane
Computing. International Workshop, WMC-CdeA 2002, Curtea de Argeş,
Romania, Revised Papers. Lecture Notes in Computer Science, 2597,
Springer, Berlin, 2003.

[87] M. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: Teoŕıa de
la Complejidad en Modelos de Computatión Celular con Membranas. Ed-
itorial Kronos, Sevilla, 2002.

[88] B. Petreska, C. Teuscher: A Hardware Membrane System. In [70], 269–
285.

[89] A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E. Shapiro: BioAmbi-
ents – An Abstraction for Biological Compartments. Theoretical Computer
Science, 325 (2004), 141–167.

[90] A. Riscos–Núñez: Programacion celular. Resolucion eficiente de problemas
numericos NP-complete. PhD Thesis, Univ. Sevilla, 2004.

[91] P. Sosik: The Computational Power of Cell Division in P Systems: Beating
Down Parallel Computers? Natural Computing, 2, 3 (2003), 287–298.

[92] P. Sosik, J. Matysek: Membrane Computing: When Communication Is
Enough. In C.S. Calude, M.J. Dinneen, F. Peper, eds., Unconventional
Models of Computation 2002, Lecture Notes in Computer Science, 2509,
Springer, Berlin, 2002, 264–275.

[93] Y. Suzuki, Y. Fujiwara, H. Tanaka, J. Takabayashi: Artificial Life Appli-
cations of a Class of P Systems: Abstract Rewriting Systems on Multisets.
In [21], 299–346.

[94] Y. Suzuki, H. Tanaka: Chemical Oscillation in Symbolic Chemical Sys-
tems and Its Behavioral Pattern. In Y. Bar-Ylam, ed.: Proc. Intern. Con-
ference on Complex Systems, New England Complex Systems Institute,
1997, 1–7.

[95] Y. Suzuki, H. Tanaka: Abstract Rewriting Systems on Multisets, and Its
Application for Modelling Complex Behaviours. In [26], 313–331.

64

[96] A. Syropoulos, P.C. Allilomes, E.G. Mamatas, K.T. Sotiriades: A Dis-
tributed Simulation of P Systems. In [70], 355–366.

[97] C. Teuscher: Alan Turing. Life and Legacy of a Great Thinker. Springer,
Berlin, 2003.

[98] M. Tomita: Whole-Cell Simulation: A Grand Challenge of the 21st Cen-
tury. Trends in Biotechnology, 19 (2001), 205–210.

[99] G. Vaszil: On the Size of P Systems with Minimal Symport/Antiport.
Pre-Proceedings of Workshop on Membrane Computing, WMC5, Milano,
Italy, June 2004, 422–431.

[100] C. Zandron: A Model for Molecular Computing: Membrane Systems. PhD
Thesis, Univ. degli Studi di Milano, 2001.

[101] C. Zandron, C. Ferretti, G. Mauri: Solving NP-Complete Problems Using
P Systems with Active Membranes. In I. Antoniou, C.S. Calude, M.J.
Dinneen, eds.: Unconventional Models of Computation, Springer, London,
2000, 289–301.

[102] The Web Page of Membrane Computing:
http://psystems.disco.unimib.it

65

66

An Approach to Computational Complexity in
Membrane Computing

Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Mario.Perez@cs.us.es

1 Introduction

The necessity to define in a satisfactory way what means a definite method for
solving mathematical problems was studied by A. Turing who investigated how
such methods should be applied mechanically, and, moreover, he formalized the
task of performing such methods in terms of the operations of a machine able to
read and write symbols on a tape divided into parts called cells (simulating how
a person can solve a problem with paper and pencil manipulating symbols).

The theory of computation deals with the mechanical solvability of problems,
that is, searching solutions that can be described by a finite sequence of elemen-
tary processes or instructions. The first goal in the theory of computation is
general problem solving; that is, to develop principles and special methods that
are able to solve any problem from a certain class of questions.

A computational model tries to capture those aspects of mechanical solutions
of problems that are relevant to these solutions, including their inherent limita-
tions. In some sense, we can think that computational models design machines
according to certain necessity.

From a practical point of view, the goal of computation theory is to take
real–life problems and try to solve them through a method capable of being
simulated by a machine when we use a suitable language to communicate that
problem to the machine (a language is a system of signs used to communicate
information between different parties).

Abstract machines are formal computing devices that we use to investigate
properties of real computing devices. Computable languages are a special type
of formal languages that can be processed by abstract machines that represent
computers.

If we have a mechanically solvable problem and we have a specific algorithm
solving it that can be implemented in a real machine, then it is very important
to know how much computational resources (time or memory) are required for
a given instance, in order to recognize the limitations of the real device.

One of the main goals of the theory of computational complexity is the study
of the efficiency of algorithms and their data structures through the analysis
of the resources required for solving problems (that is, according to their in-
trinsic computational difficulty). This theory provides a classification of the
abstract problems that allows us to detect their inherent complexity from the
computational solutions point of view.

Of course, such a classification demands a precise and formal definition of
the concept of abstract problem and the model to be considered.

The following parameters are used to specify a complexity class within a
general computational framework:

• First: the model of computation, D (in our case, recognizer P systems).

• Second: the mode of computation, M (in our case, non-deterministic and
parallel).

• Third: the resource, r, that we wish to bound (usually time and space).

• Finally, we must specify an upper bound of the resources, f (a total recur-
sive function from natural numbers to natural numbers).

Then, a complexity class is defined as the set of all languages decided by the
device D operating in mode M and such that for any input string, u, D expends
at most f(|u|) units of the resource r, to accept or reject u.

Many interesting problems of the real world are presumably intractable and
hence it is not possible to execute algorithmic solutions in an electronic com-
puter when we deal with instances of those problems whose size is large. The
theoretical limitations of the Turing machines in terms of computational power
are also practical limitations to the digital computers.

Natural Computing is a new computing area inspired by nature, using con-
cepts, principles and mechanisms underlying natural systems. Evolutionary
Algorithms use different concepts from biology. Neural Networks are inspired in
the structures of the brain and nervous system. DNA Computing is based on
the computational properties of DNA molecules and on the capacity to handle
them. Membrane Computing is inspired by the structure and functioning of
living cells.

These two last models of computation provide unconventional devices with
an attractive property (computational efficiency), they are able to create an
exponential workspace in polynomial time (and, in some sense, trading space
for time).

Can some unconventional devices be used to solve presumably intractable
problems in a feasible time? The answer is affirmative at least from a theoretical
point of view.

68

In this paper we provide a systematic and formal framework for the design of
polynomial solutions to hard problems, and to classify them according to their
polynomial solvability by cell–like membrane systems. Complexity classes in the
framework of membrane computing and their relationships with the problems
they contain, are the main subjects of this paper.

The paper is structured as follows. The next section is devoted to describe in
an informal way the deterministic and non-deterministic mode of computation in
a computing model. In Sections 3, 4, and 5 combinatorial optimization problems
and decision problems are introduced, and a relationship between them from a
complexity point of view is showed. The P versus NP problem is presented
in Section 6, and in Section 12 a characterization of that problem is obtained.
In Section 7 weakly and strongly NP–complete problems are studied. Sections
8 and 9 are devoted to present the general framework (recognizer membrane
systems) within a theory of computational complexity developed here. De-
terministic and non-deterministic polynomial complexity classes in membrane
systems are introduced in Sections 10 and 11. Finally, we study the P systems
with the capability to construct an exponential workspace in polynomial time,
and the polynomial complexity classes associated with them.

2 Determinism versus Non-Determinism

A model of computation is properly given when we formally define the concept
of mechanical procedure (algorithm). For that, it is necessary to syntactically
define it, and determine precisely how such procedures can be executed (the
semantic of the model).

The devices (systems or machines) modelling mechanical procedures can be
represented through configurations (containing a complete description of the
current state of the device). These configurations can evolve according to the
semantic of the model. Formally, the semantic defines the concept of transitions
from a configuration of the system to a next configuration; that is, the semantic
of the model specifies what means next configuration of a given configuration. A
configuration which has no next configuration is called a halting configuration.

A computation or execution of a device of a model is a sequence (finite
or infinite) of configurations such that each configuration (except the first) is
obtained from the previous one by a (step of) transition of the system. That
is, a computation starts with an initial configuration of the system, and then it
proceeds step by step, and halts when reaches a halting configuration (and then
the result is encoded in this configuration).

When we use the devices of a model of computation to solve certain kind
of problems on strings (in particular to recognize a language), it is necessary
to define what means to accept or reject a string. In this case it is possible to
consider two modes of computation in a computing model.

• The deterministic mode is characterized by the following fact: each config-
uration has at most one next configuration. In a deterministic device, given

69

a current configuration, the next configuration of the system is uniquely
determined, if any.

• The non-deterministic mode verifies the following property: each non halt-
ing configuration hast at least a next configuration. In a non-deterministic
device several next configurations can be reached from a current configu-
ration.

The computation of deterministic devices can be viewed as a tree with only one
branch, whereas the computation of a non-deterministic device can be viewed
as a tree having many possible branches. The root of the tree corresponds to
the beginning of the computation, and every node in the tree corresponds to a
point of the computation at which the machine has eventually multiple choices.
Each branch of this tree determines one computation of the system.

Next we define what means to accept or reject a string by a deterministic or
non-deterministic device (whose answers are only yes or no).

• A deterministic device M accepts (respectively, rejects) a string a if the
answer of M on input a is yes (respectively, no).

• A non-deterministic device M accepts a string a if there exists a compu-
tation of M with input a such that the answer is yes.

Let us note the difference between the definition of acceptance by deterministic
and non-deterministic devices. An input string a is accepted by a deterministic
machine M , if the computation of M on input a halts and answers yes. A non-
deterministic machine M accepts a string a if there exists some computation of
M on input a answering yes; that is, there exists a sequence of non-deterministic
choices that answers yes. In this case, it is possible that we accept a string but
that there exists another computation with the same input that either halts and
answers no, or does not halt.

Thus, a deterministic device can (mechanically) reject a string, but this is
not the case in non-deterministic machines. How can we decide (in a mechanical
way) whether there exists a non halting computation?

Non-deterministic Turing machines are like existential quantifiers: they ac-
cept an input string if there exists an accepting path in the corresponding com-
putation tree. In some sense, we can affirm that non-deterministic devices do not
properly capture the intuitive idea underlying the concept of algorithm, because
the result of such a machine on an input (that is, the output of a computation)
is not reliable, since the answer of the device is not always the same.

Non-determinism can be considered as a generalization of determinism (the
computation may branch at each configuration), and it can be viewed as a kind
of parallel computation where several “processes” can be run simultaneously.

3 Combinatorial Optimization Problems

Roughly speaking, when we deal with combinatorial optimization problems we
wish to find the best solution (according to a given criterion) among a class

70

of possible (candidate or feasible) solutions. That is, in this kind of problems
there can be many possible solutions, each one has associated a value (a positive
rational number), and we aim to find a solution with the optimal (minimum or
maximum) value.

For example, a vertex cover of an undirected graph is a set of vertices such
that any edge of the graph has, at least, an endpoint in that set. Then, we
may want to find one of the smallest vertex covers among all possible vertex
covers in the input graph. This is the combinatorial optimization problem called
Minimum Vertex Cover Problem. The main ingredients in this problem are the
following: (a) the collection of all undirected graphs, (b) the finite set of all
vertex covers associated with a given undirected graph, and (c) the cardinality
of each vertex cover of a given undirected graph.

We can formalize these ideas in the following definition.

Definition 1 A combinatorial optimization problem, X, is a tuple (IX , sX , fX)
where:

• IX is a language over a finite alphabet.

• sX is a function whose domain is IX and, for each a ∈ IX , the set sX(a)
is finite.

• fX is a function (the objective function) that assigns to each instance
a ∈ IX and each ca ∈ sX(a) a positive rational number fX(a, ca).

The elements of IX are called instances of the problem X. For each instance
a ∈ IX , the elements of the finite set sX(a) are called candidate (or feasible)
solutions associated with the instance a of the problem. For each instance
a ∈ IX and each ca ∈ sX(a), the positive rational number fX(a, ca) is called
solution value for ca. The function fX provides the criterion to determine the
best solution.

For example, the Minimum Vertex Cover problem is a combinatorial opti-
mization problem such that IX is the set of all undirected graphs, and for each
undirected graph G, sX(G) is the set of all vertex covers of G; that is, each
vertex cover of the graph is a candidate solution for the problem. The objective
function fX is defined as follows: for each undirected graph G and each vertex
cover C of G, fX(G,C) is the cardinality of C.

Definition 2 Let X = (IX , sX , fX) be a combinatorial optimization problem.
An optimal solution for an instance a ∈ IX is a candidate solution c ∈ sX(a)
associated with this instance such that,

• either for all c′ ∈ sX(a) we have fX(a, c) 6 fX(a, c′) (and then we say
that c is a minimal solution for a),

• either for all c′ ∈ sX(a) we have fX(a, c) > fX(a, c′) (and then we say
that c is a maximal solution for a).

71

A minimization (respectively, maximization) problem is a combinatorial opti-
mization problem such that each optimal solution is a minimal (respectively,
maximal) solution.

That is, an optimization problem seeks the best of all possible candidate
solutions, according to a simple cost criterion given by the objective function.
For example, the Minimum Vertex Cover problem is a minimization problem
because a minimal solution associated with an undirected graph G, provides
one of the smallest vertex covers of G.

An approximation computational device, D, for a combinatorial optimization
problem, X, provides a candidate solution c ∈ sX(a) for each instance a ∈ IX .
If the provided solution is always optimal, then D is called an optimization
computational device for X.

For instance, an approximation machine for the Minimum Vertex Cover
problem needs only find some vertex cover associated with each undirected
graph, whereas an optimization machine must always find a vertex cover with
the least cardinality associated with each undirected graph.

Having in mind that until now polynomial time optimization algorithms have
not be found for many presumably intractable problems (it is believed that this
kind of solutions can never be found), it is convenient to find an approximation
algorithm running in polynomial time and such that, for all problem instances
the candidate solution given by the algorithm is close, in a sense, to an optimal
solution.

4 Decision Problems

An important class of combinatorial optimization problems is the class of deci-
sion problems, that is, problems that require either an yes or a no answer.

Definition 3 A decision problem, X, is a pair (IX , θX) such that IX is a lan-
guage over a finite alphabet (whose elements are called instances) and θX is a
total boolean function (that is, a predicate) over IX .

Therefore, a decision problem X = (IX , θX) can be viewed as a combinatorial
optimization problem X = (IX , sX , fX) where for each instance a ∈ IX we have
the following:

• sX(a) = {θX(a)} (the only possible candidate solution associated with
instance a is 0 or 1, depending on the answer of the problem to a).

• fX(a, θX(a)) = 1.

Thus, each decision problem can be considered as a minimization (or maximiza-
tion) problem.

There exists a natural correspondence between languages and decision prob-
lems in the following way. Each language L, over an alphabet Σ, has a decision
problem, XL, associated with it as follows: IXL

= Σ∗, and θXL
= {(x, 1) | x ∈

L} ∪ {(x, 0) | x /∈ L}; reciprocally, given a decision problem X = (IX , θX), the

72

language LX over the alphabet of IX corresponding to it is defined as follows:
LX = {a ∈ IX | θX(a) = 1}.

Usually, NP-completeness has been studied in the framework of decision
problems. Many abstract problems are not decision problems, but combinatorial
optimization problems, in which some value must be optimized (minimized or
maximized). In order to apply the theory of NP-completeness to combinatorial
optimization problems, we must consider them as decision problems.

We can transform any combinatorial optimization problem into a roughly
equivalent decision problem by supplying a target/threshold value for the quan-
tity to be optimized, and asking the question whether this value can be attained.
Next we give two examples.

1. The Minimum Vertex Cover Problem.

Optimization version: Given an undirected graph G, find the cardinality
of a minimal set of a vertex cover of G.

Decision version: Given an undirected graph G, and a positive integer k,
determine whether or not G has a vertex cover of size at most k.

2. The Common Algorithmic Problem [9].

Optimization version: given a finite set S and a family F of subsets of S,
find the cardinality of a maximal subset of S which does not include any
set belonging to F .

Decision version: given a finite set S, a family F of subsets of S, and
a positive integer k, we are asked whether there is a subset A of S such
that the cardinality of A is at least k, and which does not include any set
belonging to F .

If a combinatorial optimization problem can be quickly solved, then its decision
version can be quickly solved as well (because we only need to compare the
solution value with a threshold value). Similarly, if we can make clear that a
decision problem is hard, we also make clear that its associated combinatorial
optimization problem is hard.

For example, let A be a polynomial time algorithm for the optimization
version of the Minimum Vertex Cover problem. Then we consider the following
polynomial time algorithm for the decision version of the Minimum Vertex Cover
problem: given an undirected graph G, and a positive integer k, if k < A(G)
(here A(G) is the cardinality of a smallest vertex cover of G), then answer no;
otherwise, the answer is yes.

Reciprocally, let B be a polynomial time algorithm for the decision version
of the Minimum Vertex Cover problem. Then we consider the following polyno-
mial time algorithm for the optimization version of the Minimum Vertex Cover
problem: given an undirected graph G, repeatedly while k 6 number of vertices
of G (starting from k = 0, and in the next step considering k + 1) we execute
the algorithm A on input (G, k), until we reach a first yes answer, and then the
result is k.

73

5 Solving Decision Problems

Recall that, in a natural way, each decision problems has associated a language
over a finite alphabet. Next, we define the solvability of decision problems
through the recognition of languages associated with them.

In order to specify the concept of solvability we work with an universal
computing model: Turing machines.

Let M be a Turing machine such that the result of any halting computation
is yes or no. Let L be a language over an alphabet Σ.

If M is a deterministic device (with Σ as working alphabet), then we say
that M recognizes or decides L whenever, for any string a over Σ, if a ∈ L, then
the answer of M on input a is yes (that is, M accepts a), and the answer is no
otherwise (that is, M reject a).

If M is a non-deterministic Turing machine, then we say that M recognizes
or decides L if the following is true: for any string a over Σ, a ∈ L if and only if
there exists a computation of M with input a such that the answer is yes. That
is, an input string a is accepted by M if there is an accepting computation of M
on input a. But now we do not have a mechanical criterion to reject an input
string.

Recall that any deterministic Turing machine with multiple tapes can be
simulated by a deterministic Turing machine with one tape with a polynomial
loss of efficiency, whereas the simulation of non-determinism through determin-
ism involves an exponential loss of efficiency.

In the context of computation theory, we consider a problem X to be solved
when we have a general (definite) method (described in a model of computation)
that works for any instance of the problem. From a practical point of view,
such methods only run over a finite set of instances whose sizes depend on the
available resources.

We say that a Turing machine M solves a decision problem X if M recognizes
the language associated with X; that is, for any instance a of the problem: (1)
in the deterministic case, the machine (with input a) output yes if the answer of
the problem is yes, and the output is no otherwise; (2) in the non-deterministic
case, some computation of the machine (with input a) output yes if the answer
of the problem is yes.

Due to the fact that we represent the instances of abstract problems as
strings we can consider their size in a natural manner: the size of an instance
is the length of the string. Then, how do the resources required to execute a
method increase according to the size of the instance? This is a relevant question
in computational complexity theory.

6 The P versus NP Problem

In order to solve an abstract problem by a computational device, problem in-
stances must be represented (encoded) in an adequate way that the device
understands.

74

Given a problem it is possible to use different reasonable encoding schemes
to represent the instances (we do not attempt to define reasonable, however
informally we say that reasonable means [7] to codify instances in a concise
manner, without irrelevant information, and the numbers occurring in them
should be represented in binary, or any fixed base other than 1). It is easy to
prove that the input sizes that different reasonable encoding schemes determine
differ, at most, polynomially from one another.

Recall that complexity classes provide a way to group decision problems of
similar computational complexity.

P is the class of all decision problems solvable (or languages recognized)
by some deterministic Turing machine in a time bounded by a polynomial on

the size of the input. Having in mind that all reasonable deterministic computa-
tional models are polynomially equivalent (that is, any one of them can simulate
another with only a polynomial loss of efficiency), this class is the same for all
models of computation that are polynomially equivalent to the deterministic
Turing machine with one tape. Moreover, informally speaking, P corresponds
to the class of problems having a feasible algorithm that gives an answer in a
reasonable time; that is, problems that are realistically solvable on a machine
(even for large instances of the problem).

NP is the class of all decision problems solvable in a polynomial time by
non-deterministic Turing machines; that is, for every accepted input there exists
at least one accepting computation taking an amount of steps bounded by a
polynomial on the length of the input. This class is invariant for all reasonable
non-deterministic computational models because all of them are polynomially
equivalent.

Every deterministic Turing machine can be considered as a non-deterministic
one, so we have P ⊆ NP. In terms of the previously defined classes, the
P versus NP problem can be expressed as follows: is it verified the relation
NP ⊆ P? That is, the P versus NP problem is the problem of determining
whether every language recognized by some non-deterministic Turing machine in
polynomial time is also can be recognized by some deterministic Turing machine
in polynomial time.

The P
?
= NP question is one of the outstanding open problems in theoret-

ical computer science. The relevance of this question is not only the inherent
pleasure of solving a mathematical problem, but in this case an answer to it
would provide information of high economical interest. On the one hand, a
negative answer to this question would confirm that the majority of current
cryptographic systems are secure from a practical point of view. On the other
hand, a positive answer would not only show the uncertainty about the secure-
ness of these systems, but also this kind of answer is expected to come together
with a general procedure provides a deterministic algorithm solving most of
NP-complete problem in polynomial time (furthermore, mathematics would be
transformed because real computers will be able to find a formal proof of any
theorem which has a proof of reasonable length).

In the last years several computing models using powerful tools from nature

75

have been developed (because of this, they are known as bio-inspired mod-
els) and several solutions in polynomial time to problems from the class NP
have been presented, making use of non-determinism and/or of an exponential
amount of space. This is the reason why a practical implementation of such
models (in biological, electronic, or other mediums) could provide a significant
advance in the resolution of NP-complete problems.

7 Strongly NP–Complete Problems

The Subset Sum problem is the following: given a finite set A, a weight function,
w : A → N, and a constant k ∈ N, determine whether or not there exists a
subset B ⊆ A such that w(B) = k.

It is well known that Subset Sum can be solved in time O(n · k), using
a dynamic programming algorithm. Hence, that algorithm is polynomial in
the number of input items n and the magnitude of the items k. But such
a algorithm is not a polynomial algorithm because its time bound is not a
polynomial function on the size of the input (that is, of the order Ω(n · logk)).
Then we say that such a algorithm is pseudo-polynomial, and that the problem
can be solved in pseudo-polynomial time. Nevertheless if we represent the input
in unary form then that algorithm becomes a polynomial algorithm.

Definition 4 An algorithm that solves a problem X will be called a pseudopoly-
nomial time algorithm for X if its running time would be polynomial if all input
numbers associated with each instance were expressed in unary notation.

The Knapsack and Partition problems are also NP–complete problems that can
be solved by a pseudo-polynomial time algorithm.

Often, problems which can be solved in pseudo-polynomial time are also
called weakly NP–complete problems. The existence of a pseudo-polynomial
time algorithm for a given NP–complete problem illustrate that the problem is
not so intractable after all.

Thus it is important to determine whether a problem is weakly NP–
complete, or whether it has the following stronger property.

Definition 5 A problem is said to be NP–complete in the strong sense if the
variant of it in which any instance of size n is restricted to contain integers of
size at most p(n), where p is a polynomial, remains NP–complete.

That is, the strongly NP–complete problems remains NP–complete even if
all numbers in the input are written in unary notation.

For example, the decision version of the Minimum Vertex Cover problem is
a strongly NP–complete problem since the numbers in the input (an undirected
graph) are bounded by a polynomial in the number of vertices (input size).

76

Decision Problems

NP−complete

NP−complete

Strongly

NP−complete problems (binary encoding)

NP−complete problems (unary encoding)

Conventional Model of Computation

Figure 1: NP–Completeness and codification of instances

Other strongly NP–complete problems are the following: 3–Partition, Sat,
Clique, HPP (Hamiltonian Path Problem), TSP (Travelling Salesman Problem),
and Bin Packing.

What happens if a strongly NP–complete problem can be solved by a
pseudo-polynomial time algorithm? Let X be such a problem. Then the variant
Y of it in which all input numbers of X are written in unary notation is also
NP–complete. Moreover, if A is a pseudo-polynomial time algorithm solving
X, then it is also a polynomial time algorithm that solves Y . Hence, P=NP.

Theorem 1 The following propositions are equivalent:

1. P = NP.

2. Every strongly NP–complete problem can be solved by a pseudo-polynomial
time algorithm.

3. There exists a strongly NP–complete problem that can be solved by a
pseudo-polynomial time algorithm.

Thus, to prove P=NP suffices to find a strongly NP–complete problem
solvable in pseudo-polynomial time. Recall that the concept of solvability above
mentioned is formally associated with deterministic Turing machines.

However, P systems take multisets as input and handle them through compu-
tations. Hence the inputs in P systems are provided in unary, so it is necessary
to analyze with more details when it is said that a problem is polynomial-time
solvable in the framework of membrane computing (particularly, concerning the
size of the problem instances).

In this context we can say that polynomial solutions to NP–complete prob-
lems in the framework of membrane computing, can be considered, in a sense,
as pseudo-polynomial solutions in the classical sense.

77

pseudopolynomial time

in

Strongly

NP−complete

problems

STRONG

PSEUDO

NP

P

NPC

Solvable by det. TM

polynomial time

in

Solvable by det. TM

Figure 2: Kinds of NP–complete problems

8 Recognizer Membrane Systems

Membrane computing is a recent branch of natural computing initiated in [22].
It has been developed basically from a theoretical point of view.

Membrane systems – usually called P systems – are distributed parallel com-
puti ng models inspired by the structure and functioning of living cells.

Membrane systems have several syntactic ingredients: a membrane structure
consisting of a hierarchical arrangements of membranes embedded in a skin
membrane, and delimiting regions or compartments where multisets of objects
and sets (eventually empty) of (evolution) rules are placed.

Also, P systems have two main semantic ingredients: their inherent par-
allelism and non-determinism. The objects inside the membranes can evolve
according to given rules in a synchronous (in the sense that a global clock is
assumed), parallel, and non-deterministic manner.

Can this parallelism and non-determinism be used to solve hard problems in
a feasible time? The answer is affirmative, but we must point out two consider-
ations. On the one hand, we have to deal with the non-determinism in such a
way that the solutions obtained from these devices are algorithmic solutions in
the classic sense; that is, the answers of the computations of the system must
be reliable. On the other hand, the drastic decrease of the execution time from
an exponential to a polynomial one is not achieved for free, but by the use of an
exponential workspace (in the form of membranes or string–objects), although
this space is created in polynomial (often linear) time.

In this paper we use membrane computing as a framework to attack the res-

78

olution of decision problems. In order to solve this kind of problems and having
in mind the relationship between the solvability of a problem and the recog-
nition of the language associated with it, we consider P systems as recognizer
languages devices.

Moreover, for technical reasons we only work with devices such that all
computations halt, and such that the result (yes or no answer, because we deal
with recognition of strings) is collected in the environment (and in the last step
of the computation).

All these restrictions make more difficult the process of designing families of
recognizer P systems to solve decision problems.

Definition 6 A recognizer P system is a P system with external output such
that:

1. The working alphabet contains two distinguished elements yes and no.

2. All computations halt.

3. If C is a computation of the system, then either object yes or object no
(but not both) must have been released into the environment, and only in
the last step of the computation.

In recognizer P systems, we say that a computation C is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the environment associated with the corresponding halting config-
uration of C. Hence, these devices send to the environment an accepting or
rejecting answer, in the end of their computations.

If we want these kind of systems to properly solve decision problems and
capture the true algorithmic concept, it is necessary to require a condition of
confluence; that is, the system must always give the same answer. In order
to accept or reject a string it should be enough to read the answer of any
computation of the system. In this manner, an observer outside the system can
identify the exact moment when the system halts, and know the answer.

Since P systems work in a non-deterministic manner, we need to adapt the
usual definition of acceptance in non-deterministic Turing machines.

9 Soundness and Completeness

In order to assure that a family of recognizer P systems solves a decision problem,
two main properties must to be proved: for each instance of th e problem,

(a) if there exists an accepting computation of the membrane system process-
ing it, answering yes, then the problem also answer yes for that instance
(soundness);

(b) if the problem answers yes, then any computation of the system processing
that instance, answer yes (completeness).

79

If we demand that the family of membrane systems is sound and complete, then
it satisfies a condition of confluence: every computation of a system from the
family has the same output.

Next, we formalize these ideas in the following definition.

Definition 7 Let X = (IX , θX) be a decision problem. Let Π = (Π(w))w∈IX

be a family of recognizer membrane systems without input.

• We say that the family Π is sound with regard to X if the following is
true: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(w), then θX(w) = 1.

• We say that the family Π is complete with regard to X if the following is
true: for each instance of the problem w ∈ IX , if θX(w) = 1, then every
computation of Π(w) is an accepting computation.

The soundness property means that if we obtain an acceptance response of the
system (associated with an instance) through some computation, then the an-
swer of the problem (for that instance) is yes. The completeness property means
that if we obtain an affirmative response to the problem, then any computation
of the system must be an accepting one.

of Π
Tree computationn

Yes

Yes

Decision

Problem

X

Θ
X

(w)

w

Figure 3: Soundness of a family of P systems without input

These concepts can be extended to families of recognizer P systems with
input membrane in a natural way, but in this case a P system belonging to the
family can process several instances of the problem provided that an appropriate
input, depending on the instance, is supplied to the system.

Definition 8 Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer membrane systems with input. A polynomial encoding of
X in Π is a pair (cod, s) of polynomial time computable functions over IX such
that for each instance w ∈ IX , s(w) is a natural number and cod(w) is an input
multiset of the system Π(s(w)).

80

Yes

Decision

Problem

X Yes

Tree computation
of Π

Yes

Yes
Yes

Yes

ΘX

(w)

w

Figure 4: Completeness of a family of P systems without input

Definition 9 Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be a
family of recognizer membrane systems with input. Let (cod, s) be a polynomial
encoding of X in Π.

• We say that the family Π is sound with regard to (X, cod, s) if the follow-
ing is true: for each instance of the problem w ∈ IX , if there exists an
accepting computation of Π(s(w)) with input cod(w), then θX(w) = 1.

• We say that the family Π is complete with regard to (X, cod, s) if the
following is true: for each instance of the problem u ∈ IX , if θX(u) =
1 then every computation of Π(s(u)) with input cod(u) is an accepting
computation.

The soundness property means that if given an instance we obtain an ac-
ceptance response of the system associated with it (and individualized by the
appropriate input multiset) through some computation, then the answer of the
problem (for that instance) is yes. The completeness property means that if
we obtain an affirmative response to the problem, then any computation of the
system associated with it (and individualized by the appropriate input multiset)
must be an accepting one.

10 Polynomial Complexity Classes in Mem-
brane Systems

Next, we consider different complexity classes in the framework of recognizer
membrane systems.

81

10.1 Recognizer membrane systems without input

The first results about solvability of NP–complete problems in polynomial time
(even linear) by membrane systems were given by Gh. Păun [24], C. Zandron
et al. [42], S.N. Krishna et al. [11], and A. ObtuÃlowicz [15] in the framework of
P systems that lack an input membrane. Thus, the constructive proofs of such
results design one system for each instance of the problem.

In this context, next we define polynomial complexity classes in recognizer
membrane systems without input. In order to solve a decision problem we need,
then, to associate with each instance of the problem a system which decides the
instance. We impose these systems to be confluent in the following sense: an
instance of the problem will have a positive answer if and only if every (or,
equivalently, there exists a) computation of the corresponding system is an
accepting computation.

X
Π

?

Answer

problem P system
of the of the

Answer

(w)w I ∋

Figure 5: Complexity class for membrane systems without input

We also demand that every computation is bounded, in execution time, by
a polynomial function. This is because we do not only want to obtain the same
answer, independently of the chosen computation, but that all the computations
consume, at most, the same amount of resources (in time).

Definition 10 Let R be a class of recognizer P systems without input mem-
brane. A decision problem X = (IX , θX) is solvable in polynomial time by a fam-
ily Π = (Π(w))w∈IX

, of P systems of type R, and we denote it by X ∈ PMC∗
R,

if the following is true:

• The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(w) from the instance w ∈ IX .

• The family Π is polynomially bounded; that is, there exists a polynomial
function p(n) such that for each w ∈ IX , all computations of Π(w) halt in
at most p(|w|) steps.

• The family Π is sound and complete with regard to X.

82

Note that in this complexity class we consider two different tasks: the first one
is the construction of the family, which we require to be done in polynomial
time (sequential time by deterministic Turing machines). The second one is
the execution of the systems of the family, in which we imposed that the total
number of steps performed by their computations are bounded by the function
g (parallel time by non-deterministic membrane systems).

As a direct consequence of working with recognizer membrane systems is the
fac t that these complexity classes are closed under complement.

Moreover, the complexity classes are closed under polynomial time reduction,
in the classical sense. Recall that if X = (IX , θX) and Y = (IY , θY) are decision
problems, then we say that X is reducible to Y in polynomial time if there exists
a polynomial time function f from IX to IY verifying the following condition:
for each w ∈ IX we have θX(w) = 1 if and only if θY (f(w) = 1.

Proposition 2 Let R be a class of recognizer P systems without input mem-
brane. Let X and Y be two decision problems such that X is reducible to Y in
polynomial time. If Y ∈ PMC∗

R, then X ∈ PMC∗
R.

The Hamiltonian Path Problem can be solved in quadratic time by a family
R of recognizer P systems without input in an uniform way (see [25]). Then
NP ⊆ PMC∗

R.

10.2 Recognizer membrane systems with input

A computation of a Turing machine starts when the machine is in the initial state
and we “write” a string in the input tape of the machine. Then, the machine
starts to compute according to the transition function. In the definitions of
basic P systems that have been initially considered, there is no membrane in
which we can “introduce” input objects before allowing the system to begin to
work. However, it is easy to consider input membranes in this kind of devices.

In this section we deal with recognizer membrane systems with an input
membrane and we propose to solve hard problems in an uniform way in the
following sense: all instances of a decision problem that have the same size
(according to a prefixed polynomial time computable criterion) are processed
by the same system, to which an appropriate input, that depends on the specific
instance, is supplied.

Now, we formalize these ideas in the following definition.

Definition 11 Let X = (IX , θX) be a decision problem. We say that X is
solvable in polynomial time by a family of recognizer membrane systems with
input Π = (Π(n))n∈N, and we denote it by X ∈ PMCR, if the following is
true:

• The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine that constructs in polynomial time
the system Π(n) from n ∈ N.

• There exists a polynomial encoding (cod, s) of X in Π such that:

83

– The family Π is polynomially bounded with regard (X, cod, s); that
is, there exists a polynomial function p(n) such that for each w ∈ IX

every computation of the system Π(s(w)) with input cod(w) is halting
and, moreover, it performs at most p(|w|) steps.

– The family Π is sound and complete with regard to (X, cod, s).

Note that in the above definition and in order to decide about an instance,
w, of a decision problem, first of all we need to compute the natural number
s(w), obtain the input multiset cod(w), and construct the system Π(s(w)). This
is properly a pre-computation stage, running in polynomial time expressed by
a number of sequential steps in the framework of the Turing machines. After
that, we execute the system Π(s(w)) with input cod(w). This is properly the
computation stage, also running in polynomial time, but now it is described by
a number of parallel steps, in the framework of membrane computing.

As mentioned above, these complexity classes are closed under complement.
Moreover, these complexity classes are closed under polynomial time reduc-

tion, in the classical sense.

Proposition 3 Let R be a class of recognizer P systems with input membrane.
Let X and Y be two decision problems such that X is reducible to Y in polyno-
mial time. If Y ∈ PMCR, then X ∈ PMCR.

The Satisfiability Problem can be solved in linear time by a family R of recog-
nizer P systems with input (see [35]). Then NP ⊆ PMCR.

11 (Non-Deterministic) Polynomial Complexity
Classes in Membrane Systems

According to the usual manner of considering acceptance by non-deterministic
Turing machines, we can consider non-deterministic complexity classes in P
systems without requiring them to be confluent, that is, characterizing the ac-
ceptance of an input string by the existence of an accepting computation.

Definition 12 Let R be a class of recognizer P systems without input mem-
brane. A decision problem X = (IX , θX) is non-deterministically solvable in
polynomial time by a family Π = (Π(w))w∈IX

, of P systems of type R, and we
denote it by X ∈ NPMC∗

R, if the following is true:

• The family Π is polynomially uniform by Turing machines.

• The family Π is polynomially bounded.

• The family Π is sound and complete with regard to X, in the following
sense: for each instance w ∈ IX of the problem, θX(w) = 1 if and only if
there exists an accepting computation of Π(w).

84

Note that in this definition, in contrast to the corresponding definition for de-
terministic complexity classes, we only demand that for each instance w with
affirmative answer there exists at least one accepting computation of the system
Π(w), instead of demanding every computation of the system to be an accepting
one.

Again, this class is closed under polynomial time reduction, but notice that
it does not have to be closed under complement.

Let us denote by T the class of recognizer transition P systems (see [22]).
In [35] we construct a family of recognizer transition P systems solving HPP
(in the directed version with two distinguished nodes) in linear time, in a non-
deterministic manner. That is, we have the following:

Proposition 4 HPP ∈ NPMC∗
T , and NP ⊆ NPMC∗

T .

In a similar way we can define non-deterministic complexity classes for rec-
ognizer membrane systems with input.

Definition 13 Let X = (IX , θX) be a decision problem. We say that X is non-
deterministically solvable in polynomial time by a family of recognizer membrane
systems with input Π = (Π(n))n∈N, and we denote it by X ∈ NPMCR, if the
following is true:

• The family Π is polynomially uniform by Turing machines.

• There exists a polynomial encoding (cod, s) of X in Π such that:

– The family Π is polynomially bounded with regard to (X, cod, s).

– The family Π is sound and complete with regard to (X, cod, s), but
now in the following sense: for each instance w ∈ IX of the problem,
θX(w) = 1 if and only if there exists an accepting computation of
Π(s(w)) with input cod(w).

This class is closed under polynomial time reduction, but it does not have to be
closed under complement.

In [35] we construct a family of recognizer transition P systems solving SAT
in constant time, in a non-deterministic manner. That is, we have the following:

Proposition 5 SAT ∈ NPMCT , and NP ⊆ NPMCT .

12 Characterizing the P 6= NP Relation through
P Systems

In this section we show how it is possible to attack the P versus NP problem
within the framework of membrane computing.

We consider deterministic Turing machines as language decision devices.
That is, the machines halt over any string on the input alphabet, with the
halting state being equal to the accepting state, in the case that the string

85

belongs to the decided language, and with that state equal to the rejecting
state, in the case that the string does not belong to that language.

It is possible to associate with a Turing machine a decision problem, which
will permit us to say when such a machine is simulated by a family of P systems.

Definition 14 Let TM be a Turing machine with input alphabet ΣTM . The
decision problem associated with TM is the problem XTM = (I, θ), where I =
Σ∗

TM , and for every w ∈ Σ∗
TM , θ(w) = 1 if and only if TM accepts w.

Obviously, the decision problem XTM is solvable by the Turing machine TM .

Definition 15 We say that a Turing machine TM is simulated in polynomial
time by a family of recognizer P systems if XTM ∈ PMCR.

In P systems, evolution rules, communication rules and rules involving dissolu-
tion are called basic rules. That is, by applying this kind of rules the size of the
structure of membranes does not increase. Hence, it is not possible to construct
an exponential working space in polynomial time using only basic rules in a P
system.

In Chapter 9 of [39], and following the ideas from [40], we state that every
deterministic Turing machine can be simulated in polynomial time by a family
of systems of the class R.

Proposition 6 Let TM be a deterministic Turing machine working in poly-
nomial time. Then TM can be simulated in polynomial time by a family of
recognizer P systems using only basic rules.

In [37], we proved the following result that can be considered as a reciprocal of
the above proposition.

Proposition 7 If a decision problem is solvable in polynomial time by a fam-
ily of recognizer P systems (using only basic rules), then there exists a Turing
machine solving it in polynomial time.

From the above propositions, we establish characterizations of the P 6= NP re-
lation by means of the polynomial time unsolvability of NP–complete problems
by families of recognizer P systems.

Theorem 8 The following conditions are equivalent:

(1) P 6= NP.

(2) There exists an NP–complete decision problem unsolvable in polynomial
time by a family of of recognizer P systems using only basic rules.

(3) Each NP–complete decision problem is unsolvable in polynomial time by
a family of of recognizer P systems using only basic rules.

From the constructive proof given in [37], we can deduce the following nice result
characterizing the class P.

Proposition 9 Let T the class of recognizer transition P systems. Then P =
PMCT .

86

13 P Systems with Active Membranes

P systems with membrane division were introduced in [24], and in this variant
the number of membranes can increase exponentially in polynomial time.

Next, we define P systems with active membranes using 2-division for ele-
mentary membranes, with polarizations, but without cooperation and without
priorities (and without permitting the change of membrane labels by means of
any rule).

Definition 16 A P system with active membranes using 2-division for elemen-
tary membranes is a tuple Π = (Σ,H, µ,M1, . . . ,Mm, R), where:

1. m > 1, is the initial degree of the system;

2. Σ is an alphabet of symbol-objects;

3. H is a finite set of labels for membranes;

4. µ is a membrane structure, of m membranes, labelled (not necessarily in
a one-to-one manner) with elements of H;

5. M1, . . . ,Mm are strings over Σ, describing the initial multisets of objects
placed in the m regions of µ;

6. R is a finite set of evolution rules, of the following forms:

(a) [a → ω]αh for h ∈ H,α ∈ {+,−, 0}, a ∈ Σ, ω ∈ Σ∗: This is an
object evolution rule, associated with a membrane labelled with h and
depending on the polarity of that membrane, but not directly involving
the membrane.

(b) a []α1

h → [b]α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object
from the region immediately outside a membrane labelled with h is in-
troduced in this membrane, possibly transformed into another object,
and, simultaneously, the polarity of the membrane can be changed.

(c) [a]α1

h → b []α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object is
sent out from membrane labelled with h to the region immediately out-
side, possibly transformed into another object, and, simultaneously,
the polarity of the membrane can be changed.

(d) [a]αh → b for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Σ: A membrane labelled
with h is dissolved in reaction with an object. The skin is never
dissolved.

(e) [a]α1

h → [b]α2

h [c]α3

h for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Σ:
An elementary membrane can be divided into two membranes with the
same label, possibly transforming some objects and their polarities.

These rules are applied according to the following principles:

87

• All the rules are applied in parallel and in a maximal manner. In one
step, one object of a membrane can be used by only one rule (chosen in
a non-deterministic way), but any object which can evolve by one rule of
any form, must evolve.

• If a membrane is dissolved, its content (multiset and internal membranes)
is left free in the surrounding region.

• If at the same time a membrane labelled by h is divided by a rule of typ
e (e) and there are objects in this membrane which evolve by means of
rules of type (a), then we suppose that first the evolution rules of type (a)
are used, and then the division is produced. Of course, this process takes
only one step.

• The rules associated with membranes labelled by h are used for all copies
of this membrane. At one step, a membrane can be the subject of only
one rule of types (b)-(e).

Note that these P systems have some important properties:

• They use three electrical charges.

• The polarization of a membrane can be modified by the application of a
rule.

• The label of a membrane cannot be modified by the application of a rule.

• They do not use cooperation neither priorities.

Let us denote by AM the class of recognizer P systems with active membranes
using 2-division for elementary membranes.
In this class of recognizer membrane systems:

• Some weakly NP–complete problems are solvable in polynomial time: for
example, Knapsack ([30]), Subset Sum ([29]), Partition ([8]) ∈ PMCAM.

• Some strongly NP–complete problems are solvable in polynomial time:
for example, the following problems SAT ([35]), Clique ([3]), Bin Packing
([32]), CAP ([33]) belong to the complexity classes PMCAM.

Recall that polynomial time solutions to strongly NP–complete problems by
recognizer membrane systems, can be considered as pseudo-polynomial solutions
in the classical sense.

Having in mind that the complexity class PMCAM is closed under comple-
ment and polynomial time reductions we have the following result.

Proposition 10 NP ⊆ PMCAM, and co-NP ⊆ PMCAM.

P. Sosik in [41] provides a semi–uniform efficient solution to QBF (satisfia-
bility of quantified propositional formulas), a well known PSPACE–complete
problem, in the framework of P systems with active membranes but using 2–
division for non–elementary membranes. Hence we have the following result.

88

Proposition 11 Let AM∗ be the class of recognizer P systems with ac-
tive membranes using 2-division for non–elementary membranes. Then,
PSPACE ⊆ PMC∗

AM∗ .

This result shows that the complexity classes PMCAM and PMC∗
AM∗ are not

precise enough to describe classical complexity classes below NP. Therefore, it
is challenging to investigate weaker variants of P systems with active membranes
ab le to characterize classical complexity classes (especially, the classes NP and
PSPACE).

In [1], universality has been achieved removing the polarization of mem-
branes from P systems with active membranes but allowing the change of mem-
brane labels by means of communication rules and membrane division rules.
Moreover, in this framework it is possible to solve NP–complete problems (e.g.,
the SAT problem) in linear time.

Several efficient solutions to NP–complete problems have been obtained
within the following variants of membrane systems with active membranes:

• P systems using 2–division for elementary membranes, without coopera-
tion, without priorities, without label changing, but using only two elec-
trical charges ([1], [38]).

• P systems using 2–division for elementary membranes, without cooper-
ation, without priorities, without changing of membrane labels, without
polarizations, but using bi–stable catalysts ([31]).

• P systems without polarizations, without cooperation, without priorities,
without label changing, without division, but using three types of mem-
brane rules: separation, merging, and release ([18]).

• P systems with separation rules instead of division rules, in two different
cases: in the first, using polarizations and separation rules; and in the
second one, without polarizations, without change of membrane labels
but using separation rules with change of membrane labels ([19]).

It is easy to obtain solutions to NP–complete problems through P systems
with active membranes using 2-division for elementary membranes, without
polarizations, without priorities, without label changing possibilities, but using
cooperation (or trading cooperation by priority).

But, what happens if we consider only recognizer P systems with active
membranes using 2-division for elementary membranes, without polarizations,
without cooperation, without priority, and without changing of membrane la-
bels? Let AM0 be the class of recognizer P systems of this kind.

What is exactly the class of decision problems solvable in polynomial time
by families of systems belonging to AM0? Is the relation P = PMCAM0 true?

Another interesting questions about the relationship between classical and
cellular complexity classes are the following ones:
Question 1: Is there a classical complexity class C, such that C = PMCAM?
Question 2: Given a classical complexity class C, determine a (minimal in a
descriptive sense) class of recognizer P systems F such that C = PMCF?

89

14 Conclusions

In this paper, some polynomial complexity classes in recognizer membrane sys-
tems, without or with input, and capturing the “classical” deterministic and
non-deterministic modes of computation, have been introduced.

The complexity classes corresponding to membrane systems without input
(respectively, with input) provide the general framework to design solutions to
decision problems in a semi–uniform (respectively, uniform) way.

In this context we have proven that membrane computing offers a new way
to attack the P versus NP problem.

The convenience of characterizing classical complexity classes through these
new classes is an interesting topic in order to study the minimal ingredients
required, from membrane systems point of view, to obtain certain computational
efficiency.

Acknowledgement

The author wish to acknowledge the support of the project TIC2002-04220-C03-
01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds.

References

[1] A. Alhazov, R. Freund, Gh. Păun, P systems with active memb ranes
and two polarizations. Proceedings of the Second Brainstorming Week on
Membrane Computing (Gh. Păun, A. Riscos, A. Romero, F. Sancho, eds.),
Report RGNC 01/04, 2004, 20–35.

[2] A. Alhazov, T.-O. Ishdorj, Membrane operations in P systems with active
membranes. Proceedings of the Second Brainstorming Week on Membrane
Computing (Gh. Păun, A. Riscos, A. Romero, F. Sancho, eds.), Report
RGNC 01/04, 2004, 37–52.

[3] A. Alhazov, C. Mart́ın–Vide, L. Pan, Solving graph problems by P sys-
tems with restricted elementary active membranes. Aspects of Molecular
Computing (N. Jonoska, Gh. Păun, G. Rozenberg, eds.), Lecture Notes in
Computer Science, 2950 (2004), 1–22.

[4] J. Castellanos, Gh. Păun, A. Rodrguez–Patn, P systems with worm–
objects. IEEE 7th International Conference on String Processing and In-
formation Retrieval, SPIRE 2000, La Coruña, Spain, 64–74.

[5] A. Cordón–Franco, M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, F.
Sancho–Caparrini, Implementing in Prolog an effective cellular solution for
the Knapsack problem. Membrane Computing (C. Mart́ın-Vide, Gh. Păun,
G. Rozenberg, A. Salomaa, eds.), Lecture Notes in Computer Science, 2933
(2004), 140-152.

90

[6] E. Czeiler, Self–activating P systems. Membrane Computing (Gh. Păun,
G. Rozenberg, A, Salomaa, C. Zandron, eds.), Lecture Notes in Computer
Science, 2597 (2003), 234–246.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York,
1979.

[8] M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez, A fast P
system for finding a balanced 2-partition. Soft Computing, in press.

[9] T. Head, M. Yamamura, S. Gal, Aqueous computing: writing on molecules.
Proceedings of the Congress on Evolutionary Computation 1999, IEEE Ser-
vice Center, Piscataway, NJ, 1999, 1006–1010.

[10] M. Ito, C. Mart́ın–Vide, Gh. Păun, Characterization of Parikh sets of ET0L
languages in terms of P systems. In Words, Semigroups, and Transducers
(M. Ito, Gh. Păun, S. Yu, eds.), World Scientific, Singapore, 2001, 239–254.

[11] S.N. Krishna, R. Rama, A variant of P systems with active membranes:
Solving NP–complete problems. Romanian Journal of Information Science
and Technology, 2, 4 (1999), 357–367.

[12] S.N. Krishna, R. Rama, P systems with replicated rewriting. Journal of
Automata, Languages and Combinatorics, 6, 1 (2001), 345–350.

[13] S.N. Krishna, R. Rama, Breaking DES using P systems. Theoretical Com-
puter Science, 299, 1-3 (2003), 495–508.

[14] M. Madhu, K. Kristhivasan, P systems with membrane creation: Universal-
ity and efficiency. Proceedings Third International Conference on Universal,
Machines and Computations, Chisinau, Moldova, 2001 (M. Margenstern,
Y. Rogozhin, eds.), Lecture Notes in Computer Science, 2055 (2001), 276–
287.

[15] A. ObtuÃlowicz, Deterministic P systems for solving SAT problem. Roma-
nian Journal of Information Science and Technology, 4, 1–2 (2001), 551–
558.

[16] A. ObtuÃlowicz, On P systems with active membranes: Solving the Integer
Factorization problem in a polynomial time. In Multiset Processing. Mathe-
matical, Computer Science, and Molecular Computing Points of View (C.S.
Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), Lecture Notes in Com-
puter Science, 2235 (2001), 267–285.

[17] A. ObtuÃlowicz, Note on some recursively family of P systems with active
membranes. Submitted, 2004.

91

[18] L. Pan, A. Alhazov, T.-O. Ishdorj, Further remarks on P systems with
active membranes, separation, merging, and release rules. Proceedings of
the Second Brainstorming Week on Membrane Computing (Gh. Păun, A.
Riscos, A. Romero, F. Sancho, eds.), Report RGNC 01/04, 2004, 316–324.

[19] L. Pan, T.-O. Ishdorj, P systems with active membranes and separation
rules. Journal of Universal Computer Science, 10, 5 (2004), 630–649.

[20] L. Pan, C. Mart́ın–Vide, C. Solving multiset 0–1 knapsack problem by
P systems with input and active membranes. Proceedings of the Second
Brainstorming Week on Membrane Computing (Gh. Păun, A. Riscos, A.
Romero, F. Sancho, eds.), Report RGNC 01/04, 2004, 342–353.

[21] A. Păun, On P systems with membrane division. In Unconventional Models
of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen, eds.), Springer,
London, 2000, 187–201.

[22] Gh. Păun, Computing with membranes, Journal of Computer and System
Sciences, 61, 1 (2000), 108–143, and Turku Center for Computer Science-
TUCS Report Nr. 208, 1998.

[23] Gh. Păun, Computing with membranes: Attacking NP–complete prob-
lems. In Unconventional Models of Computation (I. Antoniou, C.S. Calude,
M.J. Dinneen, eds.), 2000, 94–115.

[24] Gh. Păun, P systems with active membranes: Attacking NP–complete
problems. Journal of Automata, Languages and Combinatorics, 6, 1 (2001),
75–90.

[25] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin,
2002.

[26] Gh. Păun, M.J. Pérez–Jiménez, A. Riscos–Núñez, P systems with tables of
rules. Theory is Forever. Essays Dedicated to Arto Salomaa on the Ocassion
of His 70th Birthday (J. Karhumaki, H. Maurer, Gh. Păun, G. Rozenberg,
eds.), Lecture Notes in Computer Science, 3113 (2004), 235-249.

[27] Gh. Păun, G. Rozenberg, A guide to membrane computing. Theoretical
Computer Science, 287 (2002), 73–100.

[28] Gh. Păun, Y. Suzuki, H. Tanaka, T. Yokomori, On the power of membrane
division in P systems. Theoretical Computer Science, 324, 1 (2004), 61–85.

[29] M.J. Pérez–Jiménez, A. Riscos–Núñez, Solving the Subset-Sum problem by
P systems with active membranes. New Generation Computing, in press.

[30] M.J. Pérez–Jiménez, A. Riscos–Núñez, A linear time solution to the Knap-
sack problem using active membranes. Membrane Computing (C. Martn-
Vide, Gh. Păun, G. Rozenberg, A. Salomaa, eds.). Lecture Notes in Com-
puter Science, 2933 (2004), 250–268.

92

[31] M.J. Pérez–Jiménez, F.J. Romero-Campero, Trading polarizations for bi-
stable catalysts in P systems with active membranes. In this volume.

[32] M.J. Pérez–Jiménez, F.J. Romero-Campero, An efficient family of P sys-
tems for packing items into bins. Journal of Universal Computer Science,
10, 5 (2004), 650–670.

[33] M.J. Pérez–Jiménez, F.J. Romero-Campero, Attacking the Common Algo-
rithmic problem by recognizer P systems. Pre-proceedings of the Machines,
Computations and Universality, MCU’2004 (abstracts), September 21-26,
2004, Sankt Petesburg, p. 27.

[34] M.J. Pérez–Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoŕıa de
la Complejidad en Modelos de Computación con Membranas, Ed. Kronos,
Sevilla, 2002.

[35] M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini, Complex-
ity classes in models of cellular computing with membranes. Natural Com-
puting, 2, 3 (2003), 265–285.

[36] M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini, Solving
VALIDITY problem by active membranes with input. Proceedings of the
Brainstorming Week on Membrane Computing (M. Cavaliere, C. Mart́ın-
Vide, Gh. Păun, eds.), Report GRLMC 26/03, 2003, 279–290.

[37] M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini, The P ver-
sus NP problem through cellular computing with membranes. Aspects of
Molecular Computing. Essays Dedicated to Tom Head on the Ocassion of
His 70th Birthday (N. Jonoska, Gh. Păun, G. Rozenberg, eds.), Lecture
Notes in Computer Science, 2950 (2004), 338–352.

[38] A. Riscos-Núñez, Programacin celular: Resolucin eficiente de problemas
numricos NP–completos. PhD. Thesis, University of Seville, Spain, 2004.

[39] A. Romero-Jiménez, Complexity and Universality in Cellular Computing
Models, PhD. Thesis, University of Seville, Spain, 2003.

[40] A. Romero-Jiménez, M.J. Pérez–Jiménez, Simulating Turing machines by
P systems with external output. Fundamenta Informaticae, 49, 1-3 (2002),
273–287.

[41] P. Sosik, The computational power of cell division. Natural Computing, 2,
3 (2003), 287–298.

[42] C. Zandron, C. Ferreti, G. Mauri, Solving NP-complete problems using P
systems with active membranes. In Unconventional Models of Computation,
UMC’2K (I. Antoniou, C. Calude, M.J. Dinneen, eds.), Springer-Verlag,
Berlin, 2000, 289–301.

93

[43] C. Zandron, G. Mauri, C. Ferreti, Universality and normal forms on mem-
brane systems. Proceedings International Workshop on Grammar Systems,
2000 (R. Freund, A. Kelemenova, eds.), Bad Ischl, Austria, July 2000,
61–74.

94

Contributions
and

work in progress reports

P systems with vague boundaries:

the t-norm approach

Stefano Aguzzoli1, Daniela Besozzi2, Brunella Gerla3, Corrado
Manara3

1Università degli Studi di Milano
Dipartimento di Scienze dell’Informazione

Via Comelico 39, 20135 Milano, Italy
E-mail: aguzzoli@dsi.unimi.it

2Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione

Via Comelico 39, 20135 Milano, Italy
E-mail: besozzi@dico.unimi.it

3Università degli Studi di Salerno
Dipartimento di Matematica e Informatica

Via Ponte don Melillo, 84084 Fisciano (SA), Italy

E-mail: {bgerla,cmanara}@unisa.it

1 Introduction

In the everyday life we solve a lot of problems not caring at all about precision
and perfection of the solution. The increase of precision leads to an increase
of the amount of information whose significance then decreases until a point is
reached, after which precision and significance are mutually excluding character-
istics. Then, imprecision (vagueness) cannot be avoided and often is necessary
to convey relevant information [4].

This vagueness, called fuzziness, can raise during the process of grouping ob-
jects having some property P . In general, P cannot characterize unambiguously
the group of objects because there can exist some borderline elements, which
make unsharp the boundaries of the set

X = {x | x has the property P}.
This led to the development of fuzzy set theory and fuzzy logic (see [8, 9, 7] and
references therein).

Since the introduction of the notion of fuzzy set , the term “fuzzy logic”
has been largely used but it is important to make some distinctions. In its wide
sense, fuzzy logic is a synonymous of fuzzy set theory. In its narrow sense, it can
be considered as a logical system which aims at a formalization of approximate
reasoning. Fuzzy logic originates with the attempt to handle concepts which
admit many (more than two) degrees of truth and it is based on a comparative
notion of truth: one statement may be more true than another one. From this
point of view fuzzy logic is worth studying [2].

The path from initial considerations about fuzziness to a formal logical sys-
tem is not straightforward. Nowadays, the various approaches to many-valued
logics found in the literature are competing as natural candidates to offer to the
engineering discipline of fuzzy logic the theoretical foundations that have been
lacking for several years.

Fuzzy logic is naturally described as the logic of degrees of truth, thus differ-
entiating itself from logics of belief, and from probabilistic logic and modal logic,
which are not truth-functional. Connectives of a logic behave truth-functionally
when the value of the connection of some propositions is a function of the value
of the same propositions only.

In order to set a formal framework to deal with fuzzy or uncertain reasoning,
if we require the set of truth-values to be linearly ordered, and the connectives
of the logic to be truth-functional, then a major tool used in fuzzy logic for
modelling uncertain information is the definition of suitable triangular norms,
t-norms for short [3].

In this work we propose a t-norm based approach for handling imprecision
in P systems. P systems, initially proposed in [5], are a class of distributed and
parallel computing devices inspired by the architecture of living cells and the way
biological substances are both modified and moved among internal organelles.
In a P system, each compartment (an organelle inside the cell) can be seen as a
computing unit, having its own data and its local program (molecular substances
and biochemical reactions), and all compartments considered as a whole (the
cell) can be seen as an “unconventional” computing device. In particular, each
compartment is delimited and separated from the rest by a membrane; the
whole computing unit is formally characterized by a membrane structure, where
membranes can be hierarchically placed inside a unique external membrane
delimiting the entire cell. All membranes are semi-permeable barriers, which
either allow some substances to move inwards or outwards, and consequently
change their location in the membrane structure, or block the movement of some
other substances. The biological substances and reactions are represented by
means of objects and evolution rules. Objects are usually symbols or strings
over a given alphabet, evolution rules are given as rewriting rules with target
indications, thus describing both the transformation and the communication of
objects.

A computation in P systems is obtained by starting from an initial configu-
ration, identified by the membrane structure, the objects and the rules initially
present inside it, and then letting the system evolve. The application of rules
is performed in a nondeterministic and maximal parallel manner: all the appli-

98

cable rules have to be used to modify all objects which can be the subject of a
rule, and this is done in parallel for all membranes (a universal clock is assumed
to exist). Whenever no rule can be further applied, the computation halts and
the output is defined in terms of the objects sent out the external membrane
or, alternatively, collected inside a specified membrane. No output is obtained
if the computation never halts (that is, whenever a rule can be continuously
applied).

Further notions on many variants of P systems, as well as an updated bibli-
ography, can be found in [6] and at http://psystems.disco.unimib.it.

2 Triangular norms

Definition 1 (t-norm) A t-norm is any operator
∧∗: [0, 1]2 → [0, 1] satisfying:

1. Associativity: x
∧∗ (y

∧∗ z) = (x
∧∗ y)

∧∗ z.

2. Commutativity: x
∧∗ y = y

∧∗ x.

3. Monotonicity in each argument: If y1 6 y2 then x
∧∗ y1 6 x

∧∗ y2. If

x1 6 x2 then x1
∧∗ y 6 x2

∧∗ y.

4. Absorption: x
∧∗ 0 = 0 and Unity: x

∧∗ 1 = x.

A t-norm
∧∗ is continuous if it is continuous as a real-valued function with respect

to each variable.

A t-conorm is the dual operator of a t-norm.

Definition 2 (t-conorm) A t-conorm is any operator
∗∨: [0, 1]2 → [0, 1] satis-

fying:

1. Associativity: x
∗∨ (y

∗∨ z) = (x
∗∨ y)

∗∨ z.

2. Commutativity: x
∗∨ y = y

∗∨ x.

3. Monotonicity in each argument: If y1 6 y2 then x
∗∨ y1 6 x

∗∨ y2. If

x1 6 x2 then x1

∗∨ y 6 x2

∗∨ y.

4. Absorption: x
∗∨ 0 = x and Unity: x

∗∨ 1 = 1.

As we can note, t-norms and t-conorms differ only in the boundary condition
imposed.

Triangular norms can be used to model graded-truth conjunction. Some nat-
ural requirements such a conjunction should satisfy are met by the definition of
t-norm. Indeed, the truth degree of the conjunction of propositions A and B
should not depend on the order in which A and B are connected. The same is

99

true for the truth degree of conjunctions of several propositions A1, A2, . . . , Au.
These two properties are witnessed by commutativity and associativity. It is
also natural to assume that the truth degree of the conjunction of a propo-
sition with a complete falsity should be completely false, thus justifying the
absorption requirement. Analogously, the conjunction of a proposition with a
complete truth should not have smaller truth degree than the proposition has.
Finally, we should expect that high truth degrees of propositions A and B would
correspond to a high truth degree of their conjunction, and this is assured by
the fact that t-norms are increasing functions in each argument. Note also that
the absorption and unity properties state that each t-norm coincides with the
conjunctive connective of classical logic when properly restricted to the domain
{0, 1}2.

There exist uncountably many t-norms. If we restrict our attention to con-
tinuous t-norms only, we shall see that there exist three main t-norms, all the
others arising as suitable combinations of them:

• ÃLukasiewicz t-norm: x ¯ y = max(0, x + y − 1).

• Gödel t-norm: x ∧ y = min(x, y).

• Product t-norm: x · y = xy, product of real numbers.

An analogous approach to graded-truth implication requires that the truth
degree of A implies B should be high when the truth degree of A is not signifi-
cantly higher than the truth degree of B: then any binary operator ⇒, chosen
as semantics of an implication connective, should be non-increasing in its first
argument and non-decreasing in the second one. To model a sound and powerful
rule of graded-truth modus ponens, we require that from lower bounds a, c of the
truth degrees of propositions A and A ⇒ B respectively, we can infer a lower
bound b for the truth-degree of B. If we combine a and c by some fixed t-norm
∧∗, then we may require c = a ⇒ b to be the maximum value such that a

∧∗ c 6 b
is satisfied. Actually, the following lemma holds:

Lemma 1 Given any continuous t-norm
∧∗, there is a unique operator ⇒∧∗:

[0, 1]2 → [0, 1], such that, for all x, y, z ∈ [0, 1]:

x
∧∗ z 6 y if and only if z 6 x ⇒∧∗ y.

The operator ⇒∧∗ is called the residuum of
∧∗ and is defined by:

x ⇒∧∗ y = max(z|x ∧∗ z 6 y).

For any continuous t-norm, the residuum operation coincides with the truth-
table of classical implication, when its domain is restricted to {0, 1}2.

The residuum operators induced by the three main continuous t-norms are:

• ÃLukasiewicz implication: x ⇒¯ y = min(1, 1 − x + y).

100

• Gödel implication: x ⇒∧ y =

{
1 if x 6 y
y otherwise.

• Product implication: x ⇒· y =

{
1 if x 6 y
y/x otherwise.

The choice of a (continuous) t-norm
∧∗ determines an entire propositional

many-valued logic, with its connectives of conjunction, implication, negation,
and modus ponens.

Hájek’s Basic Logic BL [2], which is presented as a traditional Hilbert system
with a finite set of axiom schemata, is the logic of all continuous t-norms and
their residua. That is, BL proves a formula ϕ iff the standard interpretation of
ϕ evaluates identically to 1, in each t-norm algebra

([0, 1],
∧∗,⇒∧∗, 0).

The class of all algebraic models of BL forms the algebraic variety BL. The
study of subvarieties of BL is the main tool to derive results in all the most
important many-valued logics, as ÃLukasiewicz, Gödel, and Product logics. These
results concern both logical and complexity aspects: for the latter, the study of
free algebras is of the foremost importance.

ÃLukasiewicz logic is unique among many-valued propositional logics because
all its connectives (primitive and derived) have continuous functions as their
semantics.

3 P systems with vague boundaries

We assume the reader is familiar with the basic notions and notations of P
systems.

We briefly recall that a membrane structure consists of a set of membranes
hierarchically embedded in a unique membrane, called the skin membrane. The
membrane structure is identified with a string of correctly matching square
parentheses, placed in a unique pair of matching parentheses; each pair of match-
ing parentheses corresponds to a membrane. Each membrane identifies a region,
delimited by it and the membranes (if any) immediately inside it. Usually, a
unique label is univocally associated to each membrane. An object can be a
symbol or a string over a specified finite alphabet V ; multisets of objects are
usually considered in order to describe the presence of multiple copies of any
given object. In the following, we will only consider structured objects, that is
strings. Objects are modified by means of evolution rules which are, usually,
context-free rewriting rules with an associated target indication (tar, in short)
of the form here, out, in. The target indication determines the region where the
object is communicated after the application of the rule: if tar = here, then
the object remains in the same region; if tar = out, then the object exits from
the region where it was placed; if tar = in, then the object nondeterministically

101

enters one of the membranes immediately inside the region where the rule is
applied, if any inner region exists (otherwise the rule cannot be applied).

In this section we introduce the notion of a P system with vague boundaries,
which satisfies some peculiar aspects not common with the classical definition
of P system:

• each object can be simultaneously present inside many regions, this is
formally expressed by assigning a membership value to it, denoting “how
much it belongs” to every region;

• each rule can be simultaneously active in many regions, this is formally
expressed by assigning a value to it, denoting “how much it is active”
inside every region;

• there is no crisp separation of regions, instead each membrane represents
a vague boundary with respect to the adjacent regions.

As a consequence, we believe that the communication of objects can be
described with a t-norm approach (by evaluating the composition of the truth
degree of the objects with the truth degree of the rules) and it is no more
necessary to associate target indications to rules.

Formally, a P system with vague boundaries in the t-norm approach is de-
fined as

Π = (V, T, µ,M,R,Φ, (
∧∗, ∗∨), io)

where:

• V is the alphabet of the system;

• T ⊆ V is the terminal (or output) alphabet;

• µ is a membrane structure consisting of n membranes, which are injectively
labelled by numbers in the set {1, . . . , n};

• M = {σ1, . . . , σp} is a (multi)set of strings over V , representing the objects
initially present in all regions of the system;

• R = {r1, . . . , rq} is a finite set of context-free rewriting rules of the form
a → x, with a ∈ V, x ∈ V ∗, associated with the regions of µ;

• Φ = (µ1, . . . , µn) is the membership function initially associated with the
regions of µ, where µi : M ∪ R → [0, 1] for all i = 1, . . . , n;

• (
∧∗, ∗∨) is the chosen pair of t-norm and t-conorm;

• io is a number in the set {1, . . . , n} ∪ {∞}, indicating the output region.

We denote by mi the membrane (and its corresponding region) labelled with
number i, i = 1, . . . , n, present in the membrane structure µ. Note that, since we

102

do not consider any dissolving or dividing action for membranes, the membrane
structure will never be modified during any computation.

As in classical rewriting P systems, for each string that can be the subject
of many evolution rules at the same time (possibly applicable on more than one
symbol in the string), we consider only one possibility to rewrite it: we apply
only one evolution rule (nondeterministically chosen among all applicable rules)
and we apply it over only one symbol in the string (nondeterministically chosen
among all rewritable symbols). Hence, no parallel rewriting methods will be
used here.

We consider the proposition “The string σj is in the region delimited by mi”
for every mi in µ, σj ∈ M , j = 1, . . . , p, and we denote it by µi(σj). In the same
way, we denote by µi(rk) the proposition “The rule rk is active in the region
delimited by mi” for every mi in µ, rk ∈ R, k = 1, . . . , q. Hence, we have:

µi(σj) ∈ [0, 1], ∀i ∈ {1, . . . , n} ∀σj ∈ M,

µi(rk) ∈ [0, 1], ∀i ∈ {1, . . . , n} ∀rk ∈ R.

Consider two configurations C(t) = (µ,M (t)) of Π at time t and C(t+1) =
(µ,M (t+1)) of Π at time t + 1. For every σ ∈ M (t+1) let

Hσ = {(j, k) | σj ⇒ σ by using rule rk}

the multiset of couple of indexes (j, k) such that the string σ is obtained from
some string σj by application of some rule rk. For every σ ∈ M (t+1) the truth
value of the proposition “The string σ is in the region delimited by mi” is the
result of the following combination:

µi(σ) =

∗∨
(j,k)∈Hσ

(
µi(σj)

∧∗ µi(rk)
)

.

The value µi(σ) is evaluated for each string σ and for all membranes mi, in
any configuration of the system. Hence, by considering the dynamical update
of “how much” each string “belongs” to every membrane, we can determine the
“communication” of strings, that is their movement across the vague boundaries
of Π.

Let us display the multiset Hσ as {(j1, k1), (j2, k2), . . . , (ju, ku)}. The for-
mula defining µi(σ) can be read as follows:

EITHER σ is produced from σj1 by rk1

OR σ is produced from σj2 by rk2

...

OR σ is produced from σju
by rku

In the theory of fuzzy control the “connective” OR is naturally interpreted
by a t-conorm, which generalizes the disjunctive character of classical Boolean

103

disjunction in definition by cases. The t-norm used to combine the membership
of σj with the membership of rk generalizes the crisp concept of σj AND rk

belonging to the same membrane. Then it is worth examining the possible con-
nections between our description of membrane systems with vague boundaries
with the theory of t-norm based fuzzy control.

4 Discussion and future work

Here we collect some ideas for further discussion and future developments of our
preliminary proposal:

1. Here we have considered P systems with vague boundaries where only
string-objects are present inside the membrane structure. The use of
structured objects takes inspiration from the biology of the cell, where
long molecules (for instance, proteins) can live across the phospholipidic
bilayer of membranes, thus having a part inside and another part outside
the organelle delimited by that membrane. What about the natural ex-
tension of P systems with vague boundaries to the case of multisets of
symbol-objects?

2. In a cell, many transmembrane proteins act as channels or gates for the
(selective) passage of biochemical substances. In [1] the functioning of
sodium-potassium exchange pump is modelled within the framework of P
systems, and the notion of bilayer is defined in order to have a realistic
description of the cellular process. Hence, it would be interesting to intro-
duce the same notion of bilayer also in P systems with vague boundaries,
and to define the membership values of objects and rules not only for all
membranes but also for their corresponding bilayer.

3. It could be interesting to adapt our definition of membranes with vague
boundaries to describe hierarchical systems where the notion of sphere of
influence plays a key role. In this setting, the concepts of distributions of
objects and their topological or metrical relationships could be modeled
by adding structure, in the form of logical or analytical constraints, to our
basic description.

References

[1] D. Besozzi and G. Ciobanu. A P system description of the sodium-potassium
pump. Submitted work, 2004.

[2] P. Hájek. Metamathematics of fuzzy logic. Kluwer Academic Publishers,
Dordrecht, 1998.

[3] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer Academic
Publishers, Dordrecht, 2000.

104

[4] V. Novák, I. Perfilieva, and J. Mo¯cko¯r. Mathematical principles of fuzzy
logic. Kluwer, Dordrecht, 1999.

[5] Gh. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000. (See also Turku Center for Computer Science-
TUCS Report No 208, 1998, www.tucs.fi).

[6] Gh. Păun. Membrane Computing. An Introduction. Springer-Verlag, Berlin,
2002.

[7] J. Yen and R. Langari. Fuzzy Logic. Intelligence, Control, and Information.
Prentice-Hall, Upper Saddle River, 1999.

[8] L. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[9] L. Zadeh. Soft computing and fuzzy logic. IEEE Software, 11(6):48–56,
1994.

105

P systems under uncertainty:
the case of transmembrane proteins

Stefano Aguzzolia, Ioan I. Ardeleanb, Daniela Besozzic,
Brunella Gerlad, Corrado Manarad

aUniversità degli Studi di Milano
Dipartimento di Scienze dell’Informazione

Via Comelico 39, 20135 Milano, Italy
E-mail: aguzzoli@dsi.unimi.it

bInstitute of Biology of the Romanian Academy
Centre of Microbiology

Splaiul Independenţei 296
PO Box 56–53, Bucharest 060031, Romania

E-mail: ioan.ardelean@ibiol.ro
cUniversità degli Studi di Milano

Dipartimento di Informatica e Comunicazione
Via Comelico 39, 20135 Milano, Italy

E-mail: besozzi@dico.unimi.it
dUniversità degli Studi di Salerno

Dipartimento di Matematica e Informatica
Via Ponte don Melillo, 84084 Fisciano (SA), Italy

E-mail: {bgerla,cmanara}@unisa.it

1 Introduction

P systems, initially proposed in [77], are a class of distributed and parallel
computing devices inspired by the architecture and functioning of living cells.
It has to be stressed that these systems were not intended to be a model
of the cell, instead their purpose was to investigate some computational fea-
tures which can be abstracted from the cellular biology. Anyway, in sev-
eral recent works the framework of P systems has been used to define mod-
els of specific cellular processes or structures (see an updated bibliography at
http://psystems.disco.unimib.it).

In this work we are mainly interested in investigating the modelling power of
P systems, and in the extension of the framework, in order to deal with imprecise

biological information. Indeed, many aspects of the cell functioning are still
unknown to biologists and source of uncertainty. In these cases uncertainty
does not emerge not only because of the lack of knowledge about the occurrence
of some event (a mathematical model for this is provided by the probability
theory), but it is due to the vagueness, that is the capability to use imprecise
information to describe the cell functioning. Fuzzy set theory and fuzzy logic
could be useful in this framework. Hence, we propose to approach the problem of
integrating fuzzy techniques in P systems to deal with uncertainty in biological
systems.

In particular, we will briefly analyze the case of transmembrane proteins.
First we consider the P model proposed in [2] for simulating the activity of
mechanosensitive channels, where the uncertainty is related to some relevant
parameters of the model, and we give some suggestions and open problems
concerning how to use fuzzy tools within that model.

Then we propose the investigation of the global behavior of populations
of (equal or different) transport proteins, such as ATP-powered pumps, ion
channels and transporters, and the study of flux dynamics of the corresponding
transported molecules. In this case, the source of uncertainty is concerned with
the local position in the cellular membranes of transport proteins and with the
local distribution of substances, since the rate and extent of transport is also
influenced by the concentrations of substances and by the electric potential that
exists across the membrane.

The motivation of this research is to use P systems for modelling the func-
tioning of specific cellular structures and phenomena, having as final goal the
production of useful and relevant tools for biologists, and hence motivating
further cooperations between scientists working in the areas of P systems and
Microbiology. Indeed, the design of appropriate software simulators, based on
the corresponding P models, would provide an easier way to check both the
effectiveness and the correctness of the models, and hopefully become a tool
for testing known data, predicting unknown scenarios and returning meaningful
information to biologists.

2 The case of mechanosensitive channels

In this section we first give a biological description of mechanosensitive channels
with large conductance (MscL, in short), then we report a sketch and a brief
overview of the P system presented in [2] for modelling the functioning of MscL
analyzed during patch clamping experiments. The reader is referred to [2] fur
further notions and details, as well as for the references therein. Finally, we
propose and motivate a fuzzy extension of that model.

2.1 Biological description of mechanosensitive channels

Mechanosensitive channels are homopentameric transmembrane proteins gated
by mechanical forces. Their physiological function consists in the protection

108

against severe osmotic downshifts, since they allow the rapid exit of different
chemicals and the sudden decrease of the osmotic pressure inside the cell. This
event is fundamental for bacterial cell because, when the turgor pressure is too
large, the integrity of the cell can be damaged by disruption of cell wall and
plasma membrane, followed by cell death. The increase in the pressure exerted
against the cellular membrane may be due to natural environmental conditions
(e.g., rain falling) or to a suction applied during artificial patch clamping ex-
periments. In correspondence to these distinct situations, in [2] two models for
the description of the activity of MscL in E. coli and in other prokaryotes are
presented. In Section 2.2 we will only consider the in vitro model, corresponding
to patch clamping experiments.

When the cellular membrane is submitted to a mechanical stretch, it experi-
ences an increase in the membrane tension, which causes the progression of the
channel from the steady-state closed conformation to an expanded – but still
closed – conformation and, through some subconducting open states (which cor-
respond to the breaking away of the sections in the homopentameric structure),
to the fully open state (see Figure 1). According to a biological model proposed
in [11], we consider the following conformations and their relative notations:

• the closed conformation, denoted by C;

• the expanded closed conformation, denoted by CE;

• the first subconducting open conformation, denoted by SO1, where only
one subunit (out of five) is open;

• the second subconducting open conformation, denoted by SO2, where two
(out of five) subunits are open;

• the third subconducting open conformation, denoted by SO3, where three
(out of five) subunits are open;

• the fourth subconducting open conformation, denoted by SO4, where four
(out of five) subunits are open;

• the fully open conformation, denoted by O (where all five subunits are
open).

Data collected from patch clamping experiments on E. coli [12] correspond
to the following real values, or interval of values, for the membrane tension
(measured in dyne/cm):

(i) tC ∈ [0, 10), when no suction is applied to the patch membrane;

(ii) tCE = 10, when a suction is applied to the patch membrane, the membrane
tension increases and MscL is in the closed expanded substate;

(iii) tSO1, tSO2, tSO3, tSO4 ∈ (10, 13), when the channel is partly open (solutes
and water pass from the internal region to the external medium) and shows
a flickering through subconducting states;

109

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� �	 	

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �

� �
� �� � �

� � �
� � �
� � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

CE SO1

SO2

SO3SO4

O

C

Figure 1: Transitions in MscL: from the closed to the fully open conformation,
via subconducting states.

(iv) tO = 13, when MscL is fully open, chemicals and water continue to pass
from the internal region to the external medium;

(v) tL > 14, when the applied suction is so high to cause the membrane lysis.

Similarly, we can consider the following conductivity values of the subcon-
ducting and open states:

• the conductivity of the subconducting state SO1 is 0.25 · 3.5nS, that is
0.875nS;

• the conductivity of the subconducting state SO2 is 0.56 · 3.5nS, that is
1.96nS;

• the conductivity of the subconducting state SO3 is 0.74 · 3.5nS, that is
2.59nS;

• the conductivity of the subconducting state SO4 is 0.89 · 3.5nS, that is
3.115nS;

• the conductivity of the subconducting state O is 3.5nS.

2.2 A P system model for mechanosensitive channels

As said before, MscL act as transmembrane mechanoelectrical switches, opening
in response to lipid bilayer stretch and deformations and converting a mechanical

110

stress of the membrane into gating transitions. The channel open probability, as
well as the dynamic of close–to–open transitions, are functions of the membrane
tension, an essential parameter described by means of a variable label attached
to the membrane [2]. Hence, the evolution rules not only intervene in the
transformation and communication of objects, but also in the modification of the
label, which is to be interpreted as a key descriptor of the channel status. This
is a new interpretation of the membrane label, which becomes a fundamental
component of the system used to describe a biological significant counterpart
(the status of the channel, in this case), and not just an identifier of a membrane
in the membrane structure.

The definition of the variable membrane parameter (the tension) in the
in vitro model is based on the real data reported in Section 2.1. The ten-
sion label assumes real positive values in the finite set of labels Tension =
{tC , tCE , tSO1, tSO2, tSO3, tSO4, tO, tL}.

The solutions inside and outside the cell are described by considering an
external environment (in short, Env) and an inner region (in short, Reg): the
environment is made of solutes (symbols from a given alphabet Vchem) and water
molecules (each denoted by a symbol w /∈ Vchem); the internal region consists
of objects over the same alphabet of the environment, and we assume that no
other processes take place inside the cell. The semi-bracket notation is used to
denote the membrane (labelled with the tension parameter t ∈ Tension) which
separates the external environment and the internal region, that is: Env [t Reg.

Transitions among tension values are due to the changes in the pressure
applied to the patch membrane and simulated in P systems by means of a
new type of evolution rules. Namely, an in vitro environmental rule describes a
change in the pressure parameter p due to external actions, which can happen at
any time in the environment and cannot be controlled by any component of the
system. We write 〈p, apply〉[t−→prob [t′ for some p ∈ R, t, t′ ∈ Tension, prob ∈
[0, 1] ⊂ R, to denote any environmental rule which introduces the action of the
parameter p, has consequences on the membrane tension value and is applied
according to the associated probability value prob.

We give an example of in vitro evolution rules and their meaning:

〈p, apply〉[tC
−→prob=0.01 [tCE

for some p ¿ 40

〈p, apply〉[tC
−→prob=0.99 [tC

for some p ¿ 40

If the membrane tension is equal to tC and the applied pressure has a value
p ¿ 40mmHg, then the conformation of the MscL is more likely to remain
unchanged (second rule) because the applied suction is not enough to trigger
the channel activation; though, we also model the passage to the expanded state
with a very low probability (first rule).

The complete set of evolution rules and corresponding explanation can be
found in [2]. Moreover, there are reported the simulations in silico performed by
means of the complex systems simulators EdnaCo [5]. The observed quantities
emerging from the simulations (that is, they were not explicitly programmed in

111

the simulation) are the tension, the conductance and the current) . Obtained
results appear to be in line with the general biological phenomena and thus offer
biologists a challenge to verify results by actual laboratory experiments. See [2]
for output pictures of simulations and for further details.

Moreover, note that the P model presented in [2] was constructed for a single
MscL, anyway it can be considered consistent with the analysis of a population
of mechanosensitive channels. In this case, it suffices to consider the same model
for many channels, but using different sets of probability values associated to
rules, as well as, possibly, to different membrane tension values.

2.3 Towards a fuzzy P model for mechanosensitive chan-
nels

Thanks to the promising results of simulation in silico, and in order to give a
more realistic and fine description of the functioning of MscL, we propose to
extend the in vitro P model by including some fuzzy tools. From Section 2.1 we
know real values or interval of values of the parameter tension (and conductivity)
when the channel is closed, closed expanded, and so on, and in Section 2.2
we have seen how to attach a label t to the membrane to denote the current
state of the channel. The values of t in the set Tension have been considered
consistent with the real values of membrane tension measured in dyne/cm, but
no continuous transition has been assumed among channel conformation. More
precisely, one takes care only of discrete time steps, hence the channel state is
initially closed (with membrane label tC and some real value of tC in [0, 10))
and, at the next step, it might be closed expanded (with membrane label tCE

and value equal to 10). Actually, in the cell there is a gradual transition from
one conformation of the channel to the next one, hence it might be better (and
closer to reality) to study these situations together with the introduction of
membership functions, which describe the parameters tension and conductivity.
Two possible sets of membership functions for the case study are depicted in
Figure 2 and 3.

For simplicity, here we used triangular and trapezoid membership functions.
In general, a membership function is a function µF : U → [0, 1] that assigns to
every u ∈ U a degree of membership µF (u) ∈ [0, 1] to F , where U is a universe
of objects and F is a fuzzy set. The latter is completely determined by the
set of tuples F = {(u, µF (u)) | u ∈ U}. Like a crisp set, a fuzzy set can be
used to describe the value of a variable. In fuzzy set theory, the variable is
linguistic and its values are described both qualitatively by a linguistic term
(the symbols C,CE, SO1, SO2, . . .) and quantitatively by the corresponding
membership function. This knowledge representation is used in fuzzy rule-based
inference. In order to define this technique and to relate it with a P model, we
need to introduce the following definitions.

An atomic fuzzy proposition has the form

X is F

112

Figure 2: An example of membership functions for the tension.

where X is the linguistic variable, ‘is’ stands for ‘has the property of being’ and
F is a fuzzy set that describes a property. Based on this definitions and the use
of linguistic connectives as ‘and’, ‘or’ and ‘not’ one can construct more complex
fuzzy propositions.

A fuzzy rule is symbolically expressed as

if <fuzzy proposition> then <fuzzy proposition>.

The first proposition (the antecedent) describes an observed condition, while
the second one (the consequent) describes a conclusion that depends on the
antecedent. An example of fuzzy rule is:

if X is H then Y is A.

The basic steps of fuzzy rule-based inference are the following (see [13, 4] for
more details):

1. Fuzzy matching: Calculate the degree to which the input data match the
condition of the fuzzy rules.

2. Rule base processing: Calculate the rule’s conclusion base on its matching
degree and combination in a final conclusion.

113

Figure 3: An example of membership functions for the conductivity.

3. Defuzzification: For applications that need a crisp output this step con-
verts a fuzzy conclusion in a crisp one.

Usually, in the theory of fuzzy control, given a set of input and output
linguistic variables we obtain a fuzzy set as the result of the inference (that
is, the conclusion). In the case of mechanosensitive channels, the tension can
be considered as an input linguistic variable, while the conductivity can be
considered as an output variable. Moreover, another expected output should be
the control action that triggers the application of evolution rules defining the P
model for MscL. Hence we are looking for an higher level of description: how to
integrate the standard fuzzy approach with P systems?

3 The case of membrane transport proteins

The phospholipid bilayer of cellular membranes is essentially impermeable to
most water-soluble molecules and ions. Hence, the passage across membranes
of many biochemical substances (amino acids, glucide, ions) has to be mediated
by transmembrane proteins, which are usually selective with respect to the
transported substances. On the contrary, there exist other substances (gases and
small uncharged molecules) which can directly cross the phospholipid bilayer by
passive diffusion, down their concentration gradients. In this section we are only
interested in transmembrane proteins.

The three major types of transport proteins are ATP-powered pumps, ion
channels and transporters (uniporter, symporter, antiporter), which all exhibit

114

a high specificity for the transported substances and differs with respect to
the rate of transport and to the mechanism of action. ATP-powered pumps
use the energy of ATP hydrolysis to move ions or small molecules against a
chemical concentration gradient or electrical potential (the process is known
also as active transport). Ion channels simultaneously transport multiple water
molecules or many (specific) ions down their concentration or electric potential
gradients, at a very rapid rate. Some of them are usually open (for instance, the
potassium-specific channel), others are usually closed and open only in response
to specific signals. In contrast, transporters bind only one (or a few) molecules
at the same time, then a conformational change of the protein allows the trans-
port of such molecules across the membrane. Among transporters, uniporters
move one molecule at a time down its concentration gradient, while symporters
and antiporters couple the passage of one type of molecule (or ion) against its
concentration gradient to the passage of a different type of molecule (or ion)
down its concentration gradient. For more notions about membrane transport
proteins the reader can consult [8, 2].

In all cases of transport proteins, the rate and extent of ion transport is
influenced by the ion concentrations on the external and internal sides of the
membrane, and by the electric potential that exists across the membrane, as
well as by the biological structure and chemical properties of the proteins. On
the other side, the ionic gradients and electric potential across the membrane
drive many biological processes. For instance, the conduction of an electric
impulse down the axon of neurons is mediated by opening and closing of sodium,
potassium and calcium channels; in most cells, an increase in cytosolic calcium
concentration is a fundamental regulatory signal, while sodium concentration
gradient power the uptake of amino acids and other molecules.

From these considerations it is clear how important would be, from the bi-
ological point of view, an investigation of the global behavior of a population
of transport proteins and the dynamics of transported molecules. For instance,
consider the possibility of analyzing a population of channels of the same type
(e.g., a population of sodium-potassium ATPases) or of different types, possibly
“competing” for the transported molecules or ions (e.g., a population of calcium
ATPases, calcium-sodium antiporters, sodium-potassium ATPases, potassium
channels). The natural phases of investigation for this problem consist in first
defining a good model for each transport protein of interest, and then designing
a software simulator which allows the study of flux dynamics of transported
molecules. This kind of study is consistent with the guidelines of Systems Biol-
ogy [6, 58].

In this work we are mainly interested in finding a good framework for mod-
elling biological structures and processes. As reported in Section 2, P systems
have been proved valid for the modelling and the simulation of a very partic-
ular type of transmembrane channel, and our aim in Section 2.3 consisted in
extending the known P model with fuzzy tools and techniques, in order to gain
the highest resemblance to reality. In the case of transport proteins, whose
functionality depends on concentration gradients and voltage, a fundamental
aspect of the biological reality has to considered: the “locality”, which stands

115

for the local physical conditions and for the notion of nearness. Indeed, in a cell
the concentration of ions or molecules is not uniformly distributed all over the
cellular membrane, but there can exist small local zones with a higher concen-
tration with respect to others with a lower concentration. Thus, some elements
in the population might be more active, others working at lower rates, others
even resting, according to (1) the position of each (type of) transport protein in
such areas (characterized by high or low concentration gradients and voltage),
(2) the respective position of the surrounding transport proteins (of the same
or different type) and (3) the distance existing between each transport protein
and the protein-specific molecules to be transported.

To define appropriate models for simulating the behavior of channels under
different local conditions, it might be useful to approach the analysis with the
help of fuzzy techniques, in the same direction of Section 2.3.

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular
biology of the cell., 4th edition, Garland Science, New York, 2002.

[2] I.I. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy, P system models
for mechanosensitive channels, submitted, 2004.

[3] D. Besozzi, G. Ciobanu, A P system description of the sodium-potassium
pump, submitted, 2004.

[4] D. Driankov, H. Hellendoorn and M. Reinfrank. An Introduction to Fuzzy
Control. Springer-Verlag, Berlin, 1993.

[5] M. Garzon, D. Blain, A. Neel, Virtual Test Tubes for Biomolecular Com-
puting Journal of Natural Computing, 3:4 (2004), in press.

[6] T. Ideker, T. Galitski, L. Hood, A new approach to decoding life: systems
biology, Annual Reviews Genomics Hum. Genet., 2, 2001, 343–372.

[7] H. Kitano, Systems biology: a brief overview, Science, 295, 2002, 1662–
1664.

[8] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell.
Molecular cell biology, 4th edition, W.H. Freeman and Co., New York, 2000.

[9] Gh. Păun, Computing with membranes, Journal of Computer and Sys-
tem Sciences, 61(1), 2000, 108–143 (See also Turku Center for Computer
Science-TUCS Report No 208, 1998, www.tucs.fi).

[10] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin,
2002.

116

[11] S.I. Sukharev, M. Betanzos, C.S. Chiang, H.R. Guy, The Gating Mecha-
nism of the Large Mechanosensitive Channel MscL, Nature, 409, 720–724,
2001.

[12] S.I. Sukharev, W.J. Sigurdson, C. Kung, F. Sachs, Energetic and Spatial
Parameters for Gating of the Bacterial Large Conductance Mechanosensi-
tive Channel, Mscl, J. Gen. Physiol., 1999, 113, 525–539.

[13] J. Yen and R. Langari. Fuzzy Logic. Intelligence, Control, and Information.
Prentice-Hall, Upper Saddle River, 1999.

117

Metabolic algorithms and signal transduction

dynamical networks

(Abstract)

Luca Bianco, Vincenzo Manca

University of Verona
Department of Computer Science

strada Le Grazie, 15
37134 Verona, Italy

E-mail: {bianco@sci., vincenzo.manca@}univr.it

The Group for Models of Natural Computing (MNC group) in Verona de-
veloped Psim, a simulator of P systems. It’s based on the implementation of
the metabolic algorithm which is developed in Java and proves to be a cross
platform application. In the first part of the talk we describe the algorithm and
some de tails of the java simulation engine.

Then we focus our attention on the importance of reactivity coefficients as
means to regulate the policy of rules’ application and give an example of the
algorithm application to the famous Belousov-Zhabotinsky reaction.

The crucial importance of reactivity coefficients in the metabolic algorithm
lead us to the formulation of the inverse oscillation problem and we propose a
strategy of resolution of this problem, based on cycling dynamics.

We conclude the discussion by outlining one of the problems we are actually
facing: the simulation of signal transduction networks. This kind of networks
describe protein-protein interactions, whose importance is crucial in the under-
standing of all regulating mechanisms of living cells (and in general of living
organisms). From a mathematical viewpoint they turn out to be representable
as graphs. Every node contains a certain amount of one actor of the regulating
network (e.g. proteins, substrates, protein complexes). Arcs represent the pos-
sible set of interactions between contiguous nodes (e.g. activation, inhibition,
production, degradation).

Two main kinds of investigations could be carried out on signal transduction
networks: a statical one, whose aim is to measure some topological parameters
of the network; a dynamical one, whose purpose is to calculate the behaviour
of the system as time elapses, according to some initial conditions.

Due to the very high number of nodes and arcs constituting those networks,
the development of reliable simulation tools for the investigation of their dy-
namic is very important (networks composed by thousands of nodes and arcs
are frequent in biological interesting mechanisms).

120

A fuzzy approach to membrane computing with
approximate copies

Jaume Casasnovas, Manuel Moyà, Joe Miró, Francesc Rosselló

Department of Mathematics and Computer Science,
University of the Balearic Islands,
07122 Palma de Mallorca (Spain)

E-mail: {jaume.casasnovas,cesc.rossello}@uib.es

1 Introduction

Membrane computing is a formal computational paradigm, invented in 1998 by
Gh. Păun [5], that rewrites multisets of objects within a spatial structure in-
spired by the membrane structure of living cells and according to evolution rules
that are reminiscent of the processes that take place inside cells. In this paper
we use techniques based on fuzzy sets to develop a general membrane comput-
ing model that takes into account the imperfection of the reactives involved in
computations. I.e., the fact that the actual objects used in computations, as
well as the actual output of the latter, need not be exact copies of the reactives
that are assumed to be used in the computations or to be produced by them
but only approximate copies. This is a generalization of our previous work [1].
Other fuzzy approaches to membrane computing have been proposed in [3, 4, 6].

This work has been partially supported by the Spanish DGES, project
BFM2003-00771.

2 The model

Given an alphabet V , we denote by V ∗ the set of words over V . Given a word
u ∈ V ∗, we denote by |u| the length of u and, given a letter v ∈ V , by |u|v the
number of occurrences of v in w.

A fuzzy subset of a set X is a mapping from X to the unit interval I = [0, 1].
Such a fuzzy subset finite-valued when its image is a finite subset of I. For every
fuzzy subset ϕ : X → I, its t-cut, for every t ∈ [0, 1], is

ϕt = {x ∈ X | ϕ(x) > t}.

Roughly described, a fuzzy P-system will be a structure similar to a crisp P-
system, supported on a membrane structure that defines regions whose contents
evolve following rules that created, destroy and move reactives. Now, we shall
use reactives as “ideal definitions” of chemical compounds, and hence they are
fuzzy subsets of X: for every reactive v : X → [0, 1], we understand that
v(x) = t denotes that the object x ∈ X is a copy of v ∈ V with a degree t of
exactitude. So, v(x) = 1 means that x is an exact copy of the reactive v, and
v(x) = 0 means that x cannot represent in any way the reactive v. We shall say
that an object x ∈ X is similar to a reactive v ∈ V when v(x) > 0 and we shall
assume in this paper that each object in X is similar to at most one reactive.

As in the crisp case, fuzzy P-systems will be supported by a membrane
structure. Recall that a membrane structure µ is a finite rooted tree whose
nodes are called membranes. We shall always denote by M the set of membranes
of a membrane structure. This tree represents a hierarchical structure of nested
membranes, with the edges representing the relation ‘being directly inside.’ The
tree’s root 1 is then called the skin membrane. We expand every membrane
structure µ by adding a new node to it labelled env and an arc going from 1 to
env; let µ denote the resulting tree and M its set of nodes M ∪{env}. This new
node env is called the environment, because it surrounds the skin membrane.

We understand that every m ∈ M defines a region Km. At each moment,
every such region contains a set of objects. Now, he reactives being fuzzy sets,
the content of these regions at each moment will be formally described by means
of an M -indexed family of fuzzy multisets over a set V of reactives. These fuzzy
multisets specify, for every v ∈ V and for every value t ∈]0, 1], how many objects
in each region Km are copies of the reactive v with degree of accuracy t. They
are ac-fuzzy multisets in the sense of [2].

A configuration for this fuzzy P-system, with set of membranes M and set
of reactives V , will be a family of fuzzy multisets (Fm)m∈M over V ,

Fm : V × I+ → N∞, m ∈ M.

Each such mapping Fm specifies, for every v ∈ V and for every t ∈ I+, how
many objects exist in the region Km such that v(x) = t in a configuration.

Now, fuzzy P system is a structure

Π = (V, µ,mout, (Sm)m∈M , (Rm)m∈M)

where:

• V is the finite set of reactives used by the membrane system.

• µ is a membrane structure, with set of membranes M .

• mout ∈ M is the output membrane.

• (Sm)m∈M is a family of finite fuzzy multisets over V , called the initial
configuration, which describes the initial content of all regions Km.

122

• For every membrane m ∈ M , Rm is a finite set of evolution rules associ-
ated to the membrane m.

Each evolution rule in Rm has the form

R = ((c; a → (b,m)), τ, φ),

where:

— c ∈ V ∗ represents the catalysts necessary for the reaction represented
by the rule to take place; the (possibly inexact copies of these) cat-
alysts used to trigger the application of this rule are not modified in
any way by this application.

— a ∈ V ∗ represents the reactives that are processed by the reaction
represented by the rule; we shall call them the active reactives of this
rule. These reactives are spent, destroyed, when the rule is applied.

For simplicity, we assume that, for every v ∈ V , if |c|v > 0, then
|a|v = 0: i.e., any reactive that is a catalyst of a rule cannot be an
active reactive of this rule —although it could be an active reactive
for some other rule in the same region or in another one.

— (b,m) ∈ (V ×(M∪{env}))∗ represents the reactives that are produced
by the reaction represented by the rule, together with the region
where each one of them is placed: every symbol (b′,m′) in this word
means that a (possibly inexact copy of a) new reactive b′ is produced
in the region Cm′ when the reaction represented by this rule takes
place.

We assume that, for every symbol (b′,m′) appearing in the word
(b,m), the membrane m′ is adjacent to m in the expanded tree

(M,E)(env), i.e., m′ is directly included in m or m is directly in-
cluded in m′. If m′ = env, so that m = 1, the object represented by
b′ is moved to the environment, leaving the membrane system and
never coming back (notice that no rule is defined in the environment).

— τ : V → [0, 1] is a threshold function that determines the degree
of similarity to every reactive appearing in c or a necessary for an
object to be considered as such a reactive to the effect of triggering
an application of this rule.

We impose on τ the condition that τ(v) > 0 for every reactive that
is a catalyst or an active reactive of this rule. On the other hand, for
simplicity, we do not impose any threshold on the reactives that are
not either catalysts or active in a given rule: i.e., we assume that, if
v ∈ V is such that |c|v = 0 and |a|v = 0, then τ(v) = 0.

— φ :]0, 1]|c|×]0, 1]|a| →]0, 1] is a function that determines the value of
similarity of all objects produced by the reaction to the reactives
supposed to be obtained (as specified by the word (b,m)) in terms
of the similarity of the actual objects used in it to the catalysts and
active reactives of the rule.

123

Given a configuration (Fm)m∈M ,for every m ∈ M we shall denote by Fm[v]
the set of those values t ∈]0, 1] such that Fm(v, t) > 0: these are non-zero degrees
of exactitude of the copies of v that exist in Cm in the moment described by
the configuration.

An evolution rule
R = (c; a → (b,m), τ, φ)

in Rm0
can be triggered in a configuration (Fm)m∈M when, for every v ∈ V ,

∑

t>τin(v)

Fε(m0)(v, t) > |c · a|v.

This means that there are more copies in Km0
within the degree of accuracy

required by the threshold functions, than the specified quantities.
When a rule

R = (c; a → (b,m), φ, τ)

in Rm0
can be triggered in a configuration (Fm)m∈M , an application of it mod-

ifies this configuration into a new configuration (F ′
m)m∈M , which we call the

result of this specific application. This new configuration is obtained in the
following way. To simplify the notations, let

K(R) = {v ∈ V | |c|v > 0}
A(R) = {v ∈ V | |a|v > 0}

Bm′(R) = {v ∈ V | |(b,m)|(v,m′) > 0}, m′ ∈ M ;

recall that, by assumption, K(R) ∩ A(R) = ∅. For every v ∈ K(R) ∪ A(R), let

`(v) = |c|v + |a|v

and for every m′ ∈ M and for every v ∈ Bm′(R), let

rm(v) = |(b,m)|(v,m).

Now, (F ′
m)m∈M is obtained by performing the following steps:

(1) For every v ∈ K(R)∪A(R), which are the reactives that are either catalysts
or active for R, we choose `(v) objects in Cm0

with degree of similarity
with v at least τ(v). Formally, to do it, for every v ∈ K(R) ∪ A(R), if

Fm[v] ∩ [τ(v), 1] = {tv,1, . . . , tv,hv
}, with tv,1 < · · · < tv,hv

,

then we form a vector

ι(v) = (

pv,1︷ ︸︸ ︷
tv,1, . . . , tv,1, . . .

pv,hv︷ ︸︸ ︷
tv,hv

, . . . , tv,hv
)

such that 0 6 pv,j 6 Fm0
(v, tv,j) for every j = 1, . . . , hv and

∑hv

j=1 pv,j =
`(v).

124

This corresponds to choosing pv,1 objects x such that v(x) = tv,1, pv,2

objects x such that v(x) = tv,2, and so on, up to `(v) objects. These
objects (or rather, the number of objects within each degree of similarity
with v) are chosen in a non-deterministic way: forming a different such
vector would correspond to a different application of the rule and hence
it could lead to a different result. Notice also that the actual objects are
unrelevant, only their degree of similarity with v.

(2) We remove from Cm0
the chosen inexact copies of the active reactives of

R. Formally, we define, for every m ∈ M , a mapping F̃m : V ×]0, 1] → N

as follows: F̃m = Fm for every m 6= m0, and

• for every v ∈ A(R),

F̃m0
(v, tv,j) = Fm0

(v, tv,j) − pv,j for every tv,j ∈ Fm[v] ∩ [τ(v), 1]

F̃m0
(v, t) = Fm0

(v, t) if t /∈ Fm[v] ∩ [τ(v), 1]}

• for every v /∈ A(R), F̃m0
(v, t) = Fm0

(v, t) for every t ∈]0, 1].

Notice in particular that F̃m0
(v,−) is not modified for any catalyst of the

rule. This corresponds to the fact that catalysts of a reaction are not
modified by the reaction: they only must be there for the reaction to be
triggered.

(3) Let
tapp = Φ((ι(v))v∈K(R)∪A(R)) ∈]0, 1].

Notice that tapp depends on the rule (the mapping F) as well as on how
much the chosen objects were similar to the necessary reactives. Now,
to every region Cm with m adjacent to m0 and and for every v ∈ Bm,
we add rm(v) copies x of v with degree of exactitude tapp; notice that,
by assumption, these objects have degree of similarity 0 with any other
reactive v′ 6= v.

Formally, this defines, for every m ∈ M , a mapping F ′
m : V ×]0, 1] → N as

follows:

• for every m′ ∈ M and for every v ∈ Bm′(R),

F ′
m′(v, tapp) = F̃m′(v, tapp) + rm′(v)

F ′
m′(v, t) = F̃m′(v, t) if t 6= tapp

• for every m′ ∈ M and for every v /∈ Bm(R), F ′m′(v, t) = F̃m′(v, t)
for every t ∈ [0, 1].

This last configuration (F ′
m)m∈M is the result of this application of R.

Notice that a given rule may admit several applications to a given config-
uration, yielding different results, depending on the objects chosen in the first

125

step. Notice moreover that the resulting objects have a non-zero similarity with
the expected reactives that depends on the rule as well as on the input objects.

Now, as in the classical case, a transition for a membrane system Π consists
of a maximal symultaneous application of rules: all steps (1) corresponding to
rules being applied are perfomed symultaneously, then all steps (2) and finally
all steps (3). The rules applied in a given transition are chosen in a non-
deterministic way (or, in more involved models, in some regulated way), but
so that for every m no further rule in Rm can be triggered simultaneously
to them. In particular, a given rule can be triggered several times in the same
transition, provided enough (inexact) copies of the catalysts and active reactives
are available.

A finite sequence of transitions between configurations of a fuzzy P-system
Π, starting with the initial configuration, is called a computation with respect
to Π. A computation halts when it reaches a halting configuration where no
rule can be triggered.

Given a halting computation C with halting configuration (H(C)m)m∈M ,
the (crisp) multiset over I+ associated to it is

HC : I+ → N

t 7→ ∑
v∈Vout

H(C)mout
(v, t)

Thus, for every t ∈ I+, HC(t) is the number of objects in the output region
that, at the end of the computation, are copies of some output reactive with
degree of exactitude t.

Then, the output of a halting computation C will be the fuzzy subset of N

OutΠ,C : N → I
n 7→ ∨{t | HC(t) = n}

In words, OutΠ,C(n) is the greatest degree of exactitude t in I for which, at the
end of the computation C, there exist n objects in the output region that are
copies of some output reactive with degree of exactitude t.

Finally, the fuzzy set of natural numbers generated by a fuzzy membrane
system Π is the join of all the outputs of halting computations with respect to
Π. This is the mapping GenΠ : N → I defined by

GenΠ(n) =
∨

C halting

OutΠ,C(n), n ∈ N.

Thus,

GenΠ(n) =
∨{∨{t ∈ I+ | HC(t) = n} | C halting

}

=
∨{t ∈ I+ | HC(t) = n for some halting computation C}.

Notice that, I being finite, this supremum is actually a maximum, and that if
HC(t) 6= n for every halting computation C, then GenΠ(n) =

∨ ∅ = 0.

126

Theorem 1 A set of finite valued fuzzy natural numbers is r.e. if and only if
it is generated by a fuzzy P system.

The finite-valuedness of the fuzzy subsets of N generated by our fuzzy P-
systems is due to the finiteness of the sets of rules and the initial configuration.

To end this paper, we would like to point out that, although formally correct,
our specific approach has a drawback from the fuzzy mathematics point of view.
The association to a multiset H : I+ → N of the fuzzy subset of N

C(H) : N → I
n 7→ ∨{t | H(t) = n}

that underlies our definition of the output of a halting computation with respect
to a fuzzy P-system is not additive in any natural sense, and in particular it
cannot be considered a fuzzy cardinality [2]. We have tried to use some specific
simple fuzzy cardinalities in this step, and we have obtained that the resulting
fuzzy P-systems did not generate all finite-valued recursively enumerable fuzzy
subsets of N, but we have not ruled out the possibility of using some other,
cunningly chosen, fuzzy cardinality.

Our current research agenda includes this problem, as well as the problem
of getting rid of the assumption used in this paper that an object can only be
similar to one reactive.

References

[1] J. Casasnovas, J. Miró, M. Moyà, F. Rosselló, “An approach to membrane
computing under inexactitude”.

[2] J. Casasnovas, F. Rosselló, “Counting the contents of fuzzy membranes. . .
and related problems.” These proceedings.

[3] A. Obtulowicz, Mathematical models of uncertainty with a regard to mem-
brane systems, Brainstorming Week on Membrane Computing, Tarragona,
February 2003, TR 26/ 03, URV, 2003, 241–246, and Natural Computing,
2, 3 (2003), 251–263.

[4] A. Obtulowicz, General multi-fuzzy sets and fuzzy membrane syste ms, Pre-
proceedings of Fifth Workshop in Membrane Computing, WMC5, Milano,
Italy, 2004, 316–326.

[5] Gh. Păun, “Computing with membranes”, J. of Comp. and Syst. Sci. 61
(2000) 108–143.

[6] A. Syropoulos, “Fuzzyfying P Systems”, submitted (2003).

127

Counting the contents of fuzzy membranes. . .
and related problems

Jaume Casasnovas, Francesc Rosselló

Department of Mathematics and Computer Science,
University of the Balearic Islands,
07122 Palma de Mallorca (Spain)

E-mail: {jaume.casasnovas,cesc.rossello}@uib.es

The content of a membrane in a configuration of an ‘exact’ P system is
described by a multiset. Recall that a (crisp) multiset over a set of types X is
simply a mapping d : X → N. The usual interpretation of a multiset d : X → N

is that it describes a set consisting of d(x) “exact” copies of each type x ∈ X. In
particular, it is assumed that the set described by the multiset does not contain
any element that is not a copy of some x ∈ X, or rather that we do not care
about these elements, and that an element of it cannot be a copy of two different
types.

Now, the uncertainty in an ‘inexact’ P system may arise at the level of
the (lack of) crispness of its membranes’ contents, and this can be represented
using fuzzy multisets of different kinds. For instance, we could understand
that the objects are imperfect, approximate copies of the reactives purportedly
involved in its reactions. This would lead us to multisets describing, for every
reactive v and for every degree of approximation t, how many elements there
are in the membrane that are approximate copies of v with (or within) degree
of approximation t. We could also understand that our lack of knowledge of
the system refers to the number of copies of the (now, exact) reactives in each
membrane. This would lead us to multisets describing, for every reactive v and
for every n ∈ N, the degree of certainty of there being n copies of v in the
membrane. And so on.

Even using these generalized kinds of multisets, the basic processes of P
systems based on them would be still removing, creating and moving objects
within the system, and the final result of a computation would be still obtained
by counting (in some way) the objects in some membrane. This calls for the
development and study of cardinalities to ‘count’ the kind of fuzzy multisets
used in this context.

We consider here two types of cardinalities: scalar, assigning to each multiset
a positive real number, and fuzzy, assigning to each multiset a fuzzy natural

number, a fuzzy subset of N with certain properties. Both may have their
interest in different types of P systems. Fuzzy membrane systems with scalar
cardinalities would produce computable (in the membrane sense) subsets of
R

+, while fuzzy membrane systems using fuzzy cardinalities would produce
computable sets of fuzzy natural numbers.

The results on scalar and crisp cardinalities of fuzzy multisets of the first type
discussed above (fuzzy multisets of approximate copies) contained in Sections
4 and 6 of this note were proved in [3]. The rest of this note is devoted to
discuss work currently in progress. Previous studies of fuzzy cardinalities of
fuzzy multisets include [1, 2, 4, 5]

This work has been partially supported by the Spanish DGES, project
BFM2003-00771.

1 Fuzzy natural numbers

A generalized natural number is a mapping ν : N → [0, 1]; the set of generalized
natural numbers is, then, [0, 1]N. The support of a generalized natural number
ν : N → [0, 1] is the set

Supp(ν) = {n ∈ N | ν(n) > 0}.

We can include N into [0, 1]N in several ways. For instance:

• By associating to every n ∈ N the generalized natural number n : N →
[0, 1] defined by n(n) = 1 and n(m) = 0 for every m 6= n.

• By associating to every n ∈ N the generalized natural number n̂ : N →
[0, 1] defined by n̂(m) = 1 if m 6 n and n̂(m) = 0 if m > n.

• By associating to every n ∈ N the generalized natural number ñ : N →
[0, 1] defined by ñ(m) = 0 if m < n and ñ(m) = 1 if m > n.

Notice that 0 = 0̂ 6= 0̃ and that n = n̂ ∧ ñ.
It has been agreed that the ‘sum’ of generalized natural numbers corresponds

to the following operation ⊕ on [0, 1]N, called the extended sum: for every
ν, µ ∈ [0, 1]N,

(ν ⊕ µ)(k) =
∨

{ν(i) ∧ µ(j) | i + j = k} for every k ∈ N.

This extended sum of generalized natural numbers is associative, commutative,
its neutral element is 0, and it extends the sum of natural numbers for each
one of the embeddings described above. Moreover, the extended sum of two
increasing (resp., decreasing) generalized natural numbers is again increasing
(resp., decreasing).

We shall not use all generalized natural numbers but a certain subset of
them.

130

A generalized natural number is convex when ν(k) > ν(i) ∧ ν(j) for every
i 6 k 6 j. By a fuzzy natural number we shall understand a convex generalized
natural number.

We shall say that a fuzzy natural number has a summit when it takes its
greatest value in, and only in, an element n0 ∈ N, and that it has a plateau
when it takes its greatest value in, and only in, all elements of an interval
{n0, n0 + 1, . . . , n0 + k} ⊆ N. Every fuzzy natural number has a summit or a
plateau, and it increases to the left of it and decreases to the right of it.

Every increasing or decreasing generalized natural number is convex, and
the extended sum of two convex generalized natural numbers is again convex.

It would also be natural to impose the finiteness of the support of fuzzy
natural numbers, which would entail that at some distance to the left and, spe-
cially, to the right of the summit of the generalized natural number, it is defined
0. We shall not do it here (mainly because the generalized natural numbers ñ
do not have a finite support), although in some contexts this restriction appears
in a natural way: see Section 4.

The extended sum of two fuzzy natural numbers (resp., with finite support)
is again a fuzzy natural number (resp., with finite support).

We shall denote by N the set of all fuzzy natural numbers. The embeddings
N ↪→ [0, 1]N described above are embeddings N ↪→ N.

We shall use fuzzy natural numbers as models of ‘imprecisely known’ natural
numbers, taking as ‘exact natural numbers’ the images of one of these embed-
dings N ↪→ N. So, for instance, our knowledge of a quantity that lies ‘around 5’
will be represented by a fuzzy natural number with a summit in 5, or a plateau
around 5.

2 Fuzzy multisets of uncertain quantities

As we mentioned in the introduction, a natural definition of fuzzy multiset
assigns to each element of a set of types an imprecisely known natural number.
Since we are advocating here for the use of fuzzy natural numbers (actually, of
some suitable subset of them; see the next section) as models of the latter, this
leads us to the following definition.

Definition 1 A fuzzy multiset of uncertain quantities, a uq-fuzzy multiset for
short, over a set of types X is a mapping F : X → N. Such a uq-fuzzy multiset
is finite if its support

Supp(F) = {x ∈ X | F (x) 6= 0}

is a finite subset of X.

For every uq-fuzzy multisets F,G over a set X, their sum is the uq-fuzzy
multiset A + B defined pointwise by

(A + B)(x) = A(x) ⊕ B(x), for every x ∈ X.

131

A scalar cardinality of uq-multisets would measure their size by means of
positive real numbers, assigning moreover to each crisp multiset its usual car-
dinal. Such a scalar cardinality could be obtained by taking any morphism of
monoids

α : N → R
+

that preserves the chosen embedding N ↪→ N, and then defining

Scα(F) =
∑

x∈Supp(F)

α(F (x)).

Actually, if we define abstractly a scalar cardinality of uq-fuzzy multisets as a
mapping that sends every uq-fuzzy multiset to a positive real number, preserves
the sums and extends the usual cardinality of crisp multisets, then it is not
difficult to prove that all such scalar cardinalities are obtained in this way.

Anyway, the natural definition of the cardinal C of a finite uq-fuzzy multiset
F over a set of types X assigns to each one of them a fuzzy natural number:

C(F) =
⊕

x∈Supp(F)

F (x) ∈ N.

This also extends the usual cardinality of crisp multisets.3

The main problem with uq-fuzzy multisets comes from a handicap of fuzzy
natural numbers. In membrane processes, we must be able to compare and
to subtract multisets. Now, the natural definition of F 6 G for two uq-fuzzy
multisets F and G should be

F (x) 6 G(x) in N, for every x ∈ X,

And when F 6 G, the natural definition of their difference G − F should be

(G − F)(x) = G(x) − F (x) in N, for every x ∈ X.

But, what are these order and subtraction in N?

3 Subtracting fuzzy natural numbers

As we see, the use of fuzzy natural numbers to describe our imprecise knowledge
of the number of reactives in a membrane at a given moment of a process poses
two problems: comparison and subtraction. Given two fuzzy natural numbers
µ and ν, if µ is larger than ν, how can we subtract ν from µ, finding a fuzzy
natural number µ − ν such that

ν ⊕ (µ − ν) = µ?

3It is not difficult to define abstractly fuzzy cardinality of uq-fuzzy multisets and to charac-
terize them as we do it for the fuzzy cardinalities of another type of fuzzy multisets in Section
6. We shall not do it here.

132

Would it be uniquely determined?
And, actually, to begin with, what does ‘larger’ mean in N? There are some

proposals in this connection [7]. All of them translate in some sense the intuitive
idea that if ν 6 µ, then the ‘increasing’ and the ‘decreasing’ branches of ν should
lie to the left of those of µ, respectively. But they do not yield a well-defined
subtraction.

Then, if we want (and we want!) to describe uncertainly known quantities
of reactives in a membrane as fuzzy natural numbers, we need to know how to
subtract them.

First of all, notice that if the rules in the membrane system remove crisp
quantities of reactives, then we only need to compare natural numbers, em-
bedded in N as we had decided to do it, with fuzzy natural numbers, and to
subtract a natural number from a fuzzy natural number. Let’s take a glance at
the embeddings given a the beginning.

• Assume that we take the embedding n 7→ n. For every ν ∈ N and n ∈ N,
and for every m ∈ N, we have that, if ν − n is defined, then, for every
i = 0, . . . ,m,

(ν − n)(i) ∧ n(m − i) =

{
0 if m − i 6= n, i.e., if i 6= m − n
(ν − n)(i) if m − i = n, i.e., if i = m − n

which implies that

∨

i=0,...,m

(ν − n)(i) ∧ n(m − i) =

{
0 if m < n
(ν − n)(m − n) if n 6 m

In particular, if it has to be ν(m), we have that ν(m) = 0 for every m < n.
This leads us to the following definition-result:

Proposition 1 For every ν ∈ N and n ∈ N, we define that

n 6 ν if and only if ν(m) = 0 for every m < n.

And if n 6 ν, then we define ν − n ∈ N by (ν − n)(i) = ν(n + i) for every
i ∈ N.

With these definitions, if n 6 ν, then the fuzzy natural number ν − n is
the only one such that n ⊕ (ν − n) = ν.

• Assume now that we take the embedding n 7→ n̂. In this case more
involved discussion proves the following result.

Proposition 2 For every ν ∈ N and n > 1, there exists some ν − ñ ∈ N

such that ñ ⊕ (ν − ñ) = ν if and only if ν has a plateau of at least n + 1
elements.

And when ν has such a plateau {n0, . . . , n0 +k0}, then taking (ν− ñ)(i) =
ν(i) for every i < n0 + k0 and (ν − ñ)(i) = ν(i + n) for every i > n0 + k0

we obtain a fuzzy natural number such that n̂⊕ (ν − n̂) = ν, but not all of
them.

133

Thus, we can define

n̂ 6 ν if and only if ν has a plateau of at least n + 1 elements,

and the subtraction ν − n̂ as in the last proposition.

Since the fuzzy natural numbers n̂ are decreasing, it is natural to use them
when we only consider decreasing fuzzy natural numbers. For decreasing
fuzzy numbers, the order defined above becomes

n̂ 6 ν if and only if ν(0) = · · · = ν(n)

and then, when n̂ 6 ν, taking ν − n̂ defined by (ν − n̂)(i) = ν(i + n) for
every i ∈ N, yields a solution of n̂ ⊕ (ν − n̂) = ν.

• A similar situation happens with the embeddings n 7→ ñ. We leave the
details to the reader.

In the general situation, if we want to remove uncertain quantities of reac-
tives from a membrane where we have other uncertain quantities of reactives,
we need to give some answer to the following question.

Open question. To identify a meaningful and general enough sub-

set N
′

of N where a meaningful (possibly partial) order 6 can be
defined in such a way that, for every µ, ν belonging to this subset, if
ν 6 µ, then there exists one distinguished element µ − ν such that

ν ⊕ (µ − ν) = µ. Moreover, N should be embedded into N
′
in some

way.

This would mean, of course, that we would allow the “uncertain quantities

of reactives” to lie only in N
′
, i.e., to define uq-fuzzy multisets as mappings

X → N
′
.

For instance, if we restrict ourselves to decreasing fuzzy natural numbers,
then the solution of the general problem is the following. We define

ν 6 µ if and only if |ν−1(t)| 6 |µ−1(t)|, for every t ∈]0, 1],

and then, a subtraction satisfying the desired property can be defined as follows:
if ν 6 µ in this sense, then we consider the mapping H(µ, ν) :]0, 1] → N defined
by

H(µ, ν)(t) = |µ−1(t)| − |ν−1(t)| for every t ∈]0, 1],

and then
(µ − ν)(n) =

∨
{t ∈ [0, 1] |

∑

t′>t

H(µ, ν)(t′) > n}.

This is a decreasing fuzzy natural number such that µ ⊕ (ν − µ) = ν, but it is
the only one.

134

These order and subtraction were first described by A. ObtuÃlowicz in [6],
and can be obtained as a slight modification of a particular case of a general
construction that we shall discuss in Section 5.

If ν = n̂, for some n, then, with this order, n̂ 6 µ if and only if µ(0) = · · · =
µ(n) = 1, and then the subtraction agrees with the one described above in the
particular case of subtracting n̂ from decreasing fuzzy natural numbers.

If we restrict ourselves to increasing fuzzy natural numbers, then our prob-
lem also has a solution. The order and the corresponding subtraction can be
obtained again as a particular case of the aforementioned general construction
we shall give later.

In general, in Section 5 we shall show a method to produce families of fuzzy
natural numbers where an order and a subtraction can be defined. We do not
know whether some of them is natural enough to be used in practice: perhaps a
nice subfamily of one of them will work. The interesting fact is that our families
arise as another type of fuzzy cardinalities of multisets.

4 Fuzzy cardinalities of finite multisets on]0, 1].

A (crisp) multiset over]0, 1] is a mapping A :]0, 1] → N. A multiset A over]0, 1]
is finite if its support

Supp(A) = {t ∈]0, 1] | A(t) > 0}

is a finite subset of]0, 1]. We shall denote the set of all finite multisets over
]0, 1] by FMS(]0, 1]), and by ⊥ the null multiset, defined by ⊥(t) = 0 for every
t ∈]0, 1].

For every A,B ∈ FMS(]0, 1]), their sum A + B is the multiset

(A + B)(t) = A(t) + B(t), for every t ∈]0, 1].

We shall denote by n/t the multiset sending t to n and every t′ 6= t to 0.
A fuzzy cardinality of a finite multiset A over]0, 1] is a fuzzy natural number

that measures how many elements has A.

Definition 2 A fuzzy cardinality on FMS(]0, 1]) is a mapping C :
FMS(]0, 1]) → N that satisfies the following conditions:

(i) For every A,B ∈ FMS(]0, 1]), C(A + B) = C(A) ⊕ C(B).

(ii) For every A,B ∈ FMS(]0, 1]) and for every i, j ∈ N such that i >∑
t∈Supp(A)(A) and j >

∑
t∈Supp(A)(B), C(A)(i) = C(B)(j).

(iii) If Supp(A) ⊆ {1}, then C(A)(i) ∈ {0, 1} for every i ∈ N and, moreover,
if n = A(1), then C(A)(n) = 1.

(iv) If t, t′ ∈]0, 1] are such that t 6 t′, then

C(1/t)(0) > C(1/t′)(0) and C(⊥)(1) 6 C(1/t)(1) 6 C(1/t′)(1).

135

Let us explain the meaning as well as some motivations for each one of these
conditions:

• Condition (i), additivity, generalizes to fuzzy natural numbers the addi-
tivity of the classical cardinal of a crisp multiset.

• Condition (ii) implements the idea that the elements t not belonging to
the support of a finite multiset A should not affect the cardinality of A.

• Condition (iii) requires that, on each multiset of the form n/1, with n ∈ N,
any fuzzy cardinality must take values only in {0, 1}, and the value 1 on the
specific number n. If in this property we restrict the type of cardinalities
we accept for n/1, then the overall set of cardinalities is restricted.

• Condition (iv) captures the restriction that the value of the cardinality of
singletons on 0 must decrease and their value on 1 must increase with the
element of their support.

The bracket fuzzy cardinality defined in the next example will play a key
role henceforth.

Example 3 Let us consider the function

[] : FMS(]0, 1]) → [0, 1]N

A 7→ [A]

where, for every A ∈ FMS(]0, 1]),

[A] : N → [0, 1]
i 7→ [A]i

is defined by

[A]i =
∨

{t ∈ [0, 1] |
∑

t′>t

A(t′) > i}.

It is clear that [A] is decreasing and that [A]i = 0 for every i >
∑

t∈Supp(A)(A),

and hence [A] ∈ N for every A ∈ FMS(]0, 1]). It turns out that this mapping
A 7→ [A] is a fuzzy cardinality on FMS(]0, 1]), which we shall call the bracket
cardinality.

Definition 3 Let f : [0, 1] → [0, 1] be an increasing mapping such that f(0) ∈
{0, 1} and f(1) = 1 and let g : [0, 1] → [0, 1] be a decreasing mapping such that
g(0) = 1 and g(1) ∈ {0, 1}.

Let Cf,g : FMS(]0, 1]) → N be the mapping defined as follows: for every
A ∈ FMS(]0, 1]) and i ∈ N,

Cf,g(A)(i) = f([A]i) ∧ g([A]i+1).

The key theorem in this section is the following.

136

Theorem 4 A mapping C : FMS(]0, 1]) → N is a fuzzy cardinality if and only
if C = Cf,g for some increasing mapping f : [0, 1] → [0, 1] such that f(0) ∈ {0, 1}
and f(1) = 1 and some decreasing mapping g : [0, 1] → [0, 1] such that g(0) = 1
and g(1) ∈ {0, 1}.

The last theorem allows us to call the mapping Cf,g, for every f, g as in
Definition 3, the fuzzy cardinality generated by f and g. It provides an explicit
description of all fuzzy cardinalities in terms of the bracket cardinality.

Proposition 5 Cf,g(A) is increasing for every A ∈ FMS(]0, 1]) if and only if
f is the constant mapping 1, in which case Cf,g(A)(k) = g([A]k+1) for every
A ∈ FMS(]0, 1]) and k ∈ N.

Proposition 6 Cf,g(A) is decreasing for every A ∈ FMS(]0, 1]) if and only
if g is the constant mapping 1, in which case Cf,g(A)(k) = f([A]k) for every
A ∈ FMS(]0, 1]) and k ∈ N.

Since, for every f, g as in Definition 3 and, for every A ∈ FMS(]0, 1]) and
k ∈ N,

Cf,g(A)(k) = f([A]k) ∧ g([A]k+1),

we deduce the following result.

Corollary 7 Every fuzzy cardinality on FMS(]0, 1]) is the meet of an in-
creasing fuzzy cardinality and a decreasing fuzzy cardinality: namely Cf,g =
Cf,1 ∧ C1,g.

The equality in the last statement and the fact that, for every A, Cf,1(A) is
decreasing and C1,g(A) is increasing, easily entail that, in the non-trivial cases
when neither f nor g are the constant mapping 1, there exists an n0 ∈ N such
that

Cf,g(A)(i) =

{
C1,g(A)(i) if i < n0

Cf,1(A)(i) if i > n0

These give the increasing and decreasing branches of Cf,g(A).

5 Subtracting fuzzy natural numbers revisited

Let 6 denote the partial order on FMS(]0, 1]) defined pointwise by

A 6 B if and only if A(t) 6 B(t) for every t ∈]0, 1].

If A 6 B, then their difference B − A is the multiset defined pointwise by

(B − A)(t) = B(t) − A(t) for every t ∈]0, 1].

Proposition 8 Let C be a fuzzy cardinality on FMS(]0, 1]). If A,B ∈
FMS(]0, 1]) are such that A 6 B, then

C(A) ⊕ C(B − A) = C(B).

137

This makes us return to the open question that we posed in Section 3. In
view of Proposition 8, a possible answer to it would be to take, for any fuzzy
cardinality C on FMS(]0, 1]),

NC = {C(A) ∈ N | A ∈ FMS(]0, 1])},

to define on this set the partial order

ν 4 µ if and only if there exist A,B ∈ FMS(]0, 1]) such that ν =
C(A), µ = C(B) and A 6 B,

and then to define, for every A,B ∈ FMS(]0, 1]) such that A 6 B,

C(B) − C(A) = C(B − A).

This poses, of course, several technical questions. Is 4 a wel-defined partial
order? Is the subtraction in NC well-defined, in the sense that if A,A′, B,B′ ∈
FMS(]0, 1]) are such that C(A) = C(A′), C(B) = C(B′), A 6 B, and A′ 6 B′,
does it always happen that

C(B′ − A′) = C(B − A)?

We conjecture that the answer is in general positive, but we have not been able
to prove it. Anyway, we have the following result.

Proposition 9 Let f, g be mappings as in Definition 3. If f and g are injective,
then, for every A,B ∈ FMS(]0, 1]), if Cf,g(A) = Cf,g(B), then A = B.

Thus, if we restrict the set of cardinalities to those generated by bijective
mappings f and g, then the answers are indeed positive (although we still do
not know whether C(B − A) is the only fuzzy natural number whose extended
sum with C(A) yields C(B)).

The third question is the characterization of the sets NC. In this connection,
we have the following results.

Proposition 10 For every ν ∈ N there always exist injective mappings f, g as
in Definition 3 such that ν ∈ NCf,g

. But, given µ, ν ∈ N, there need not exist a

fuzzy cardinality C such that µ, ν ∈ NC.

Theorem 11 Let f, g be two bijective mappings as in Definition 3, and let
t0 ∈ [0, 1] be the only point where they cross, i.e., such that f−1(t0) = g−1(t0).

For every ν ∈ N, we have that ν ∈ NCf,g
if and only if one of the following

two conditions holds:

(a) ν(n) 6 t0 for every n ∈ N, and ν has a plateau.

(b) There is only one point n0 such that ν(n0) > t0, and then the values of
ν(n0 − 1), ν(n0) and ν(n0 +1) are linked through some specific conditions
(namely, there exist t1 < t0 < t2 such that ν(n0 − 1) = g(t2), ν(n0 + 1) =
f(t1) and ν(n0) = f(t2) ∧ g(t1)).

138

Besides cardinalities Cf,g generated by bijective mappings, we could also take
C to be the bracket cardinality, or the increasing cardinality A 7→ 1−[A]i+1. The
first one yields all decreasing fuzzy multisets µ with finite support and µ(0) = 1,
while the second one yields all increasing fuzzy multisets with finite support. In
this cases, the subtraction is also well defined through the construction provided
above.

6 Fuzzy multisets of approximate copies

Let us consider now fuzzy multisets describing sets containing approximate
copies of the types. In a first approach, by such a fuzzy multiset over a set
of types X we would understand a mapping A : X × [0, 1] → N. Such a fuzzy
multiset would be understood to describe a set consisting of, for each x ∈ X
and for every t ∈ [0, 1], A(x, t) copies of x with degree of similarity t to it.

We shall impose two restrictions on this interpretation of a fuzzy multiset.
First, the set described by the fuzzy multiset does not contain any element that
is not a copy of some x ∈ X with some non-negative degree of similarity —or
rather, we do not care about them. This is a natural condition. Second, we
assume that if an element of the set is an inexact copy of x with degree of
similarity t > 0, then it cannot be an inexact copy of any other type in X with
a non-negative degree of similarity. This is a strong condition, and we shall
return on it at the end of this section. These two conditions entail that, for
every x ∈ X, the value A(x, 0) must be equal to

∑
w∈X−{0}

∑
t>0 A(w, t) and in

particular that the restriction of A to X × {0} is determined by the restriction
of A to X×]0, 1]. This leads us finally to the following definition.

Definition 4 A fuzzy multiset of approximate copies, an ac-fuzzy multiset for
short, over a set X is a mapping A : X×]0, 1] → N,, i.e., a mapping

A : X × MS(]0, 1]).

Such an ac-fuzzy multiset is finite if its support

Supp(A) = {x ∈ X | A(x) 6= ⊥}

is a finite subset of X and, for every x ∈ Supp(A), A(x) ∈ FMS(]0, 1]).

We shall denote the sets of all ac-fuzzy multisets and of all finite fuzzy
multisets over X by FMS(X) and FFMS(X), respectively.

Given two ac-fuzzy multisets A,B over X, their sum A + B is the ac-fuzzy
multiset over X defined pointwise by

(A + B)(x) = A(x) + B(x) for every x ∈ X.

For every x ∈ X and A ∈ MS(]0, 1]), we shall denote by A/x the fuzzy
multiset over X defined by (A/x)(x) = A and (A/x)(y) = ⊥ for every y 6= x.

139

Notice that if A is finite, then A/x is also finite, and that, for every A ∈
FFMS(X),

A =
∑

x∈Supp(A)

(A(x))/x.

The partial order 6 on FMS(X) is defined by

A 6 B if and only if A(x) 6 B(x) for every x ∈ X.

If A 6 B, then their difference B −A is the fuzzy multiset defined pointwise by

(B − A)(x) = B(x) − A(x) for every x ∈ X.

The scalar cardinality of a finite fuzzy multiset A is a real number that
measures the overall size of the set described by A.

Definition 5 A scalar cardinality on FFMS(X) is a mapping Sc :
FFMS(X) → R

+ that satisfies the following conditions:

(i) Sc(A + B) = Sc(A) + Sc(B) for every A,B ∈ FFMS(X).

(ii) Sc((1/1)/x) = 1 for every x ∈ X.

A scalar cardinality Sc on FFMS(X) is homogeneous when it satisfies the
following extra property:

(iii) Sc(M/x) = Sc(M/y) for every x, y ∈ X and M ∈ FMS(]0, 1]).

Next proposition provides a description of all scalar cardinalities on
FFMS(X).

Proposition 12 A mapping Sc : FFMS(X) → R
+ is a scalar cardinality

if and only if for every x ∈ X there exists a mapping fx :]0, 1] → R
+ with

fx(1) = 1, such that, for every fuzzy multiset A over X,

Sc(A) =
∑

x∈X

∑

t∈Supp(A(x))

fx(t)A(x)(t).

Moreover, the mappings (fx)x∈X are uniquely determined by Sc, and Sc is ho-
mogeneous if and only if fx = fy for every x, y ∈ X.

Now, a fuzzy cardinality of a fuzzy multiset measures the size of the set it
describes by means of a fuzzy natural number.

Definition 6 A fuzzy cardinality on FFMS(X) is a mapping C :
FFMS(X) → N that satisfies the following conditions:

(i) For every A,B ∈ FFMS(X), C(A + B) = C(A) ⊕ C(B).

140

(ii) For every x ∈ X, the mapping

C(/x) : FMS(]0, 1]) → N

M 7→ C(M/x)

is a fuzzy cardinality on FM(]0, 1])

A fuzzy cardinality is homogeneous when it satisfies the following further
condition:

(iii) For every x, y ∈ X, C(/x) = C(/y).

Proposition 13 A mapping C : FFMS(X) → N is a fuzzy cardinality if and
only if for every x ∈ X there exists an fuzzy cardinality Cx : FMS(]0, 1]) → N

such that
C(M) =

⊕

x∈X

Cx(M(x)).

Moreover, the family (Cx)x∈X is uniquely determined by C, and C is homoge-
neous if and only if Cx = Cy for every x, y ∈ X.

Thus, homogeneous scalar and fuzzy cardinalities understand fuzzy multisets
as a sum of crisp multisets, one on every type x ∈ X, and “count” this sum.
Arbitrary scalar and fuzzy cardinalities “count” each multiset on each x ∈ X,
possibly using a different cardinality for every x ∈ X, and then add up these
results.

Adding a fuzzy multiset to a fuzzy multiset corresponds to the extended sum
of their cardinalities. As far a removing a fuzzy multiset from another fuzzy
multiset, we still have the following result.

Corollary 14 Let C be a fuzzy cardinality on FFMS(X). If A,B ∈
FFMS(X) are such that A 6 B, then

C(A) ⊕ C(B − A) = C(B).

Therefore, the fuzzy cardinal of B −A can be seen as the subtraction of the
cardinal of A to that of B. Notice anyway that now we are subtracting fuzzy
multisets, and the subtraction of cardinals is a consequence of this operation.

We should remove our working hypothesis that an object can only be similar
to only one reactive in order to cover more general situations, where objects can
be similar to different reactives or even where reactives can be similar them-
selves. This would affect our constructions in two ways. The first one is that
the values of a fuzzy multiset over a set X on elements of the form (x, 0) would
no longer be entailed by the rest of values, and thus multisets would have to be
defined as mappings

F : X → MS([0, 1]).

This is conceptually easy, although technically involved, to cope with.

141

But if we remove this hypothesis, then the order for fuzzy multisets and
their subtractions become something darker. It is not the same to have an
object similar to x and to y than two objects, one similar to x and the other
similar to y: in the first case, when we remove one single object we get the null
multiset, in the second case, not.

Our results on cardinalities of ac-fuzzy multisets deal with abstract objects
and therefore they are formally correct in this new setting, but they are not
sound. For instance, Proposition 14 is a direct consequence of additivity, but it
should not held in this setting. Thus, cardinals of these fuzzy multisets would
have to be handled in a completely different way, and uncertain P systems with
membranes’ contents described by these multisets would be more difficult to
define.

References

[1] P. Bosc et al, About difference operation on fuzzy bags. Proceedings IPMU
2002, 1541–1546.

[2] P. Bosc et al, About Zf, the Set of Fuzzy Relative Integers, and the Definition
of Fuzzy Bags on Zf. Proceedings IFSA2003, 95–102.

[3] J. Casasnovas, F. Rosselló, Scalar and fuzzy cardinalities of crisp and fuzzy
multisets. Submitted (2004).

[4] M. Delgado, D. Sanchez, M. J. Mart́ın-Bautista, M.A. Vila, A probabilis-
tic definition of a nonconvex fuzzy cardinality. Fuzzy Sets and Systems 126
(2002) 177–190.

[5] Delgado M. et al, On a Characterization of Fuzzy Bags. Proceedings
IFSA2003, 119–126.

[6] A. ObtuÃlowicz, General multi-fuzzy sets and fuzzy membrane systems. Pre-
proceedings of the WMC 2004.

[7] M. Wygralak, Vaguely defined objects, Representations, fuzzy sets and non-

classical cardinality theory. Kluwer Academic Press (1996).

142

Modelling Biological Processes in P Systems:

Handling Imprecision and Constructing New

Models
Abstract

Matteo Cavaliere

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

martew@inwind.it

Membrane systems (P systems) are computational devices inspired from cell
functioning, [8]. For this reason, it is important to introduce, in the P sys-
tems area, instruments to handle the imprecision that arises from (our) partial
knowledge of many cellular phenomena.

We present two possible ways to tackle imprecision in P systems.
A first way consists in handling imprecision by using known mathematical

devices (for instance, probability). This approach has been considered in [1,
2]. There has been shown how, using a model of P systems called evolution-
communication, [3], enriched with probabilities, it is possible to simulate simple
(and important) biological processes that occur in living cells. In particular, in
[2] has been presented the modelling of respiration in escherichia coli and the
modelling of respiration-photosynthesis interaction in cyanobacteria.

A second way to handle imprecision in P systems can be considered more
“drastic”: one tries to construct P systems that work independently from im-
precision. This approach has been presented in [4], where time imprecision has
been considered. In particular, in [4], have been introduced timed P systems
and time-free P systems.

The motivation for these models comes from the following consideration: a
standard feature of P systems is that each rule is executed in exactly one (clock)
step; this mathematical assumption does not have a corresponding counterpart
in cell biology, where different chemical reactions might take different times to
be executed. Therefore, it is natural to consider a model of P systems (timed
P systems) where to each rule is associated a certain time of execution.

On the other hand, we want to avoid “problems” that could derive from
time imprecision; for this reason, it would be extremely useful to investigate
P systems producing always the same result independently from the time of
executions of the rules. In this respect, a special model of P systems, called
time-free, has been introduced and investigate in [4].

Formally, a P system is called time-free when it produces always the same
set of vectors of natural numbers independently from the time of executions of
its rules. In this way, time-free P systems can be considered “safe” against time
imprecision.

A third way to handle time imprecision would be to mix the first two ap-
proaches: one tries to construct time-free P systems that are “safe” against
“controlled” imprecision. In this respect, in [4, 6] has been considered the class
of partially time-free P systems.

Preliminary results concerning time-free P systems have been obtained in
[4, 5, 6, 7]. There, several computational results have been obtained but many
(interesting) open problems still need to be afforded.

References

[1] I.I. Ardelean, M. Cavaliere, Playing with a Probabilistic P System Simula-
tor: Mathematical and Biological Problems, First Brainstorming Week on
Membrane Computing, TR 26/03 URV, 2003, Tarragona, Spain, 37–45.

[2] I.I. Ardelean, M. Cavaliere, Modelling Biological Processes by Using a Prob-
abilistic P System Software, Natural Computing, 2, 2, 2003, 173–197.

[3] M. Cavaliere, Evolution–Communication P Systems, Membrane Computing
(Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597,
Springer-Verlag, Berlin, 2003, 134–145.

[4] M. Cavaliere, Toward Asynchronous P Systems, Pre-Proceeding of Fifth
Workshop On Membrane Computing, WMC5, Milano, Italy, 2004, 161–
173.

[5] M. Cavaliere, V. Deufemia, On Time-Free P Systems, manuscript, 2004.

[6] M. Cavaliere, D. Sburlan, Time-Independent P Systems, Membrane Com-
puting. International Workshop WMC5, Milano, 2004, LNCS, Springer-
Verlag, to appear.

[7] M. Cavaliere, D. Sburlan, Time and Synchronization in Membrane Systems,
submitted, 2004.

[8] Gh. Păun, Membrane Computing – An Introduction. Springer-Verlag,
Berlin, 2002.

144

Quantum Energy–based P Systems

Alberto Leporati, Dario Pescini, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

e-mail: {leporati,pescini,zandron}@disco.unimib.it

Abstract

Energy–based P systems have been recently defined as P systems in
which the amount of energy manipulated and/or consumed during com-
putations is taken into account. In this paper we propose two quantum
versions of energy–based P systems. Both versions are defined just like
classical energy–based P systems, but for objects and rules. Objects are
represented as pure states in the Hilbert space C

d, whereas the definition
of rules differs between the two models. In the former, rules are defined as
bijective functions — implemented as unitary operators — which trans-
form the objects from the alphabet. In the latter, rules are defined as
generic functions which map the alphabet into itself. Such functions are
implemented using a generalization of the Conditional Quantum Control
technique, and may yield to non–unitary operators. Finally, we address
some problems and outline some directions for future work.

1 Introduction

P systems (also called membrane systems) have been introduced in [14] as a new
class of distributed and parallel computing devices, inspired by the structure and
functioning of living cells. The basic model consists of a hierarchical structure
composed by several membranes, embedded into a main membrane called the
skin. Membranes divide the Euclidean space into regions, that contain some
objects (represented by symbols of an alphabet) and evolution rules. Using
these rules, the objects may evolve and/or move from a region to a neighboring
one. The rules are applied in a nondeterministic and maximally parallel way:
all the objects that may evolve are forced to evolve. A computation starts from
an initial configuration of the system and terminates when no evolution rule
can be applied. The result of a computation is the multiset of objects contained
into an output membrane or emitted from the skin of the system.

In what follows we assume the reader is already familiar with the basic no-
tions and the terminology underlying P systems. For a systematic introduction,
we refer the reader to [15]. The latest information about P systems can be found
in [18].

Energy–based P systems have been defined in [16] as P systems in which the
amount of energy manipulated and/or consumed during computations is taken
into account. A given amount of energy is associated to each object of the sys-
tem. Moreover, instances of a special symbol e are used to denote free energy
units occurring into the regions of the system. These energy units can be used
to transform objects, using appropriate rules. The rules are defined according
to conservativeness considerations. An object can always be transformed into
another object having the same energy. On the other hand, if the transformed
object has a different energy then the required (resp., exceeding) free energy
units are taken from (resp., released to) the region where the rule is applied.
We assume that the application of rules consumes no energy. This means, in
particular, that objects can be moved (without altering them) between the re-
gions of the system without energy consumption. A special case of energy–based
P systems are conservative P systems, where the amount of energy entering the
system with the input values is completely returned with the output values at
the end of the computation.

Formally, an energy–based P system (of degree m ≥ 1) is a construct

Π = (A, ε, µ, e, w1, . . . , wm, R1, . . . , Rm, iin, iout)

where:

• A is an alphabet; its elements are called objects;

• ε : A → N is a linear mapping that associates to each object a ∈ A the
value ε(a) (also denoted by εa), which can be thought of as the “energy
value of a”. If ε(a) = `, we also say that object a embeds ` units of
energy. Precisely, if A = {a1, a2, . . . , ad} then for all i ∈ {1, 2, . . . , d}
it holds ε(ai) = ε(a1) + (i − 1)δ for an appropriate integer value δ >
0. Hence, the energy values considered in the system are equispaced by
the quantity δ. By adding “dummy” symbols into the alphabet (that is,
symbols which never appear in the system during the computations), we
can always assume δ = 1 without loss of generality;

• µ is a hierarchical membrane structure consisting of m membranes. For
the sake of clarity, we will label membranes with mnemonic identifiers
which recall their function;

• e 6∈ A is a special symbol that denotes one free energy unit, that is, one
unit of energy which is not embedded into any object;

• wi, for all i ∈ {1, . . . ,m}, specify the multiset (over A ∪ {e}) of objects
initially present in region i;

146

• Ri, for all i ∈ {1, . . . ,m}, is a finite set of evolution rules over A associated
with region i. Only rules of the following types are allowed:

aek → (b, p) , a → (b, p)ek , e → (e, p)

where a, b ∈ A, p ∈ {here, in(name), out} and k is a non negative integer;

• iin is an integer between 1 and m and specifies the input membrane of Π;

• iout is an integer between 0 and m and specifies the output membrane of
Π. If iout = 0 then the environment is used for the output, that is, the
output value is the multiset of objects (over A) emitted from the skin.

A special attention is due to the definition of rules. The meaning of rule
aek → (b, p), with a, b ∈ A, p ∈ {here, in(name), out}, and k a positive integer
number, is the following: the object a, in presence of k free energy units, is
allowed to be transformed into object b. If p = here then the new object b
remains in the same region; if p = out then b exits from the current membrane.
Finally, if p = in(name) then b enters into the membrane labelled with name,
which must be a child of the current membrane in the membrane hierarchy.

The meaning of rule a → (b, p)ek, when k is a positive integer number, is
analogous. The object a is allowed to be transformed into object b by releasing
k units of free energy. As above, the new object b may optionally move one level
up or down into the membrane hierarchy. The k free energy units can now be
used by another rule to produce “more energetic” objects from “less energetic”
ones.

When k = 0 the rule aek → (b, p) is written as a → (a, p), and simply
moves (if p 6= here) the object a upward or downward into the membrane
hierarchy, without acquiring nor releasing any free energy unit. Analogously,
rules e → (e, p) simply move (if p 6= here) one unit of free energy upward or
downward into the membrane hierarchy.

A further constraint is that each rule must be “conservative”, in the sense
that the amount of energy occurring on the left side of the rule must be the
same as the amount of energy which occurs on the right side.

With a little abuse of notation, when the pair (x, p), with x ∈ A ∪ {e}
and p ∈ {here, in(name), out}, appears into a rule we will write xp. Also, if
p = in(name) and no confusion arises we will usually write just the name of the
membrane. Moreover, instead of writing ek we will sometimes explicitly write k
instances of e. It is also understood that the position of ek (that is, on the left
or on the right of the symbol from A) either into the left or into the right side
of a rule is uninfluent. Finally, when the position p of an object which occurs
in the right side of a rule is “here” we will omit to write it.

A configuration of Π is the tuple (M1, . . . ,Mm) of multisets (over A∪{e}) of
objects contained in each region of the system. (w1, . . . , wm) is called the initial
configuration. For two configurations (M1, . . . ,Mm), (M ′

1, . . . ,M
′
m) of Π we

write (M1, . . . ,Mm) ⇒ (M ′
1, . . . ,M

′
m) to denote a transition from (M1, . . . ,Mm)

to (M ′
1, . . . ,M

′
m). The reflexive and transitive closure of ⇒ is denoted by ⇒∗.

A final configuration is a configuration where no rule can be applied.

147

A computation is a sequence of transitions between configurations of Π,
starting from the initial configuration. A computation is successful if and only
if it reaches a final configuration or, in other words, it halts. It is understood
that the multiset (over A, that is, not considering free energy units) of objects
which occur in wiin are the input values for the computation. Analogously, the
multiset (over A) of objects occurring in the output membrane (or emitted from
the skin if iout = 0) in the final configuration is the output of the computation.
A non–halting computation produces no output.

Since energy is an additive quantity, it is natural to define the energy of a
multiset as the sum of the amounts of energy associated to each instance of the
objects which occur into the multiset. Analogously, the energy of a configuration
is the sum of the amounts of energy associated to each multiset which occurs
into the configuration. A conservative computation is a computation where
each configuration has the same amount of energy. A conservative energy–
based P system is an energy–based P system that performs only conservative
computations.

Energy–based P systems are by no means the first model of P systems which
involve energy. We recall in particular [1, 8, 17, 9]. In [12] it is shown that
energy–based P systems are able to simulate the Fredkin gate. By allowing
different objects of the alphabet to embed the same amount of energy, in [13]
the simulation is extended to reversible Fredkin circuits. Moreover it is shown
that the simulating P systems can be made self–reversible (that is, able to
perform both “forward” and “backward” computations) and conservative. This
result shows that (non–uniform families of) energy–based P systems are able to
perform universal computations.

2 Quantum versions of energy–based P systems

In this section we propose two quantum versions of energy–based P systems.
From now on, quantum energy–based P systems will simply be called quantum
P systems for short. Both versions are defined just like classical energy–based
P systems, but for objects and rules. The objects are represented as pure states
in the Hilbert space C

d, whereas the definition of rules differs between the two
models. In the former, rules are defined as bijective functions — implemented
as unitary operators — which transform the objects from the alphabet. In
the latter, rules are defined as generic functions which map the alphabet into
itself. Such functions are implemented using a generalization of the Conditional
Quantum Control technique, and may yield to non–unitary operators.

Before delving into the details of quantum P systems, let us recall some ba-
sic notions of quantum computing. From an abstract point of view a quantum
computer can be considered as made up of interacting parts. The elementary
units (memory cells) that compose these parts are two–levels quantum systems
called qubits. A qubit is typically implemented using the energy levels of a two–
levels atom, or the two spin states of a spin– 1

2 atomic nucleus, or a polarization
photon. The mathematical description — independent of the practical realiza-

148

tion — of a single qubit is based on the two–dimensional complex Hilbert space
C

2. The Boolean truth values 0 and 1 are represented in this framework by the
unit vectors of the canonical orthonormal basis, called the computational basis
of C

2:

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]

Qubits are thus the quantum extension of the classical notion of bit, but whereas
bits can only take two different values, 0 and 1, qubits are not confined to their
two basis (also pure) states, |0〉 and |1〉, but can also exist in states which are
coherent superpositions such as ψ = c0 |0〉+ c1 |1〉, where c0 and c1 are complex
numbers satisfying the condition |c0|2 + |c1|2 = 1. A qubit in this state is not
simply in state |0〉 or |1〉, nor is it in an intermediate state; rather the qubit is
in both states simultaneously and a mere act of measurement alters this state.
Indeed, performing a measurement on a qubit in the above superposition will
return 0 with probability |c0|2 and 1 with probability |c1|2; the state of the qubit
after the measurement (post–measurement state) will be |0〉 or |1〉, depending
on the outcome.

Let us stress that in axiomatic quantum mechanics a pure state is described
by a one–dimensional subspace of the involved Hilbert space, whose vectors are
representatives of this state. Thus, two unit vectors |ψ〉 and |ϕ〉 describe (belong
to) the same state if and only if they differ of a phase factor, that is, if and only
if there exists a real value ϑ ∈ [0, 2π) such that |ψ〉 = eiϑ |ϕ〉.

A quantum register of size n (also called an n–register) is mathematically
described by the Hilbert space ⊗n

C
2 = C

2 ⊗ . . . ⊗ C
2

︸ ︷︷ ︸
n times

, representing a set of n

qubits labelled by the index i ∈ {1, . . . , n}. An n–configuration (also pattern) is
a vector |x1〉 ⊗ . . .⊗ |xn〉 ∈ ⊗n

C
2, usually written as |x1, . . . , xn〉, considered as

a quantum realization of the Boolean tuple (x1, . . . , xn). Let us recall that the
dimension of ⊗n

C
2 is 2n and that {|x1, . . . , xn〉 : xi ∈ {0, 1}} is an orthonormal

basis of this space called the n–register computational basis.
Unlike the situation of the classical wired computer, where voltages of a

wire go over voltages of another, in quantum computers something different
happens. Each qubit of a given n–register is prepared in some particular pure
state (|0〉 or |1〉) in order to realize the required n–configuration |x1, . . . , xn〉,
quantum realization of an input Boolean tuple of length n. Then, a linear
operator G : ⊗n

C
2 → ⊗n

C
2 is applied to the n–register. The application of

G has the effect of transforming the n–configuration |x1, . . . , xn〉 into a new n–
configuration G(|x1, . . . , xn〉) = |y1, . . . , yn〉, which is the quantum realization of
the output tuple of the computer. In other words, G transforms the vectors of
the n–register computational basis into vectors of the same basis. Let us stress
that in particular such operator G changes the state |xi〉 (with xi ∈ {0, 1}) of
each qubit of the register into a new state |yi〉 (with yi ∈ {0, 1}) of the same
qubit, and we interpret such modifications as a computation step performed by
the quantum computer.

The action of the operator G on Φ =
∑

ci1...in |xi1 , . . . , xin
〉, expressed as

a linear combination of the elements of the n–register basis, is obtained by

149

linearity: G(Φ) =
∑

ci1...inG(|xi1 , . . . , xin
〉). We recall that linear operators

which act on n–registers can be represented as order 2n square matrices of
complex entries. Usually such operators, as well as the corresponding matrices,
are required to be unitary. In particular, this implies that the implemented
operations are logically reversible (an operation is logically reversible if its inputs
can always be deduced from its outputs).

All these notions can be easily extended to quantum systems which have
d > 2 pure states. In this setting, the d–valued versions of qubits are usu-
ally called qudits [10]. As it happens with qubits, a qudit is typically imple-
mented using the energy levels of an atom or a nuclear spin. The mathematical
description — independent of the practical realization — of a single qudit is
based on the d–dimensional complex Hilbert space C

d. In particular, the pure

states |0〉 ,
∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉 are represented by the unit vectors of

the canonical orthonormal basis, called the computational basis of C
d:

|0〉 =

1
0
...
0
0

,

∣∣∣∣
1

d − 1

〉
=

0
1
...
0
0

, · · · ,

∣∣∣∣
d − 2

d − 1

〉
=

0
0
...
1
0

, |1〉 =

0
0
...
0
1

As before, a quantum register of size n can be defined as a collection of n qu-
dits. It is mathematically described by the Hilbert space ⊗n

C
d = C

d ⊗ . . . ⊗ C
d

︸ ︷︷ ︸
n times

.

An n–configuration is now a vector |x1〉 ⊗ . . . ⊗ |xn〉 ∈ ⊗n
C

d, simply writ-

ten as |x1, . . . , xn〉, for xi running on Ld =
{

0, 1
d−1 , 2

d−1 , . . . , d−2
d−1 , 1

}
. An

n–configuration can be viewed as the quantum realization of the “classical” tu-
ple (x1, . . . , xn) ∈ Ln

d . The dimension of ⊗n
C

d is dn and the set {|x1, . . . , xn〉 :
xi ∈ Ld} of all n–configurations is an orthonormal basis of this space, called the
n–register computational basis. Notice that the set Ld can also be interpreted
as a set of truth values, where 0 denotes falsity, 1 denotes truth and the other
elements indicate different degrees of indefiniteness.

In our definition of quantum P systems, all the elements of the model (mul-
tisets, the membrane hierarchy, input and output membrane, configurations,
computations, and so on) are defined just like the corresponding elements of
a classical energy–based P system, but for objects and rules. The objects
are represented by the pure states of a quantum system. Hence, if the al-
phabet contains d ≥ 2 elements, then without loss of generality we can put

A =
{
|0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

}
, that is, A = {|a〉 : a ∈ Ld}. In a

possible physical realization, we can think of a quantum system which is able
to assume the above pure states. As stated above, such system will also be able
to assume as a state any superposition of the kind:

c0 |0〉 + c 1
d−1

∣∣∣∣
1

d − 1

〉
+ . . . + c d−2

d−1

∣∣∣∣
d − 2

d − 1

〉
+ c1 |1〉

150

with c0, c 1
d−1

, . . . , c d−2

d−1

, c1 ∈ C such that
∑d−1

i=0

∣∣c i
d−1

∣∣2 = 1. A multiset is simply

a collection of quantum systems, each in its own state. In the most general
setting, two or more quantum systems may become entangled, either because
they are prepared in this way as input values for a computation, or because
they are the result of the application of an operator on them. When two or
more quantum systems are entangled, the state of each single system is tied to
the state of the other systems. So, if we perform a measurement on a single
system of an entangled pair, such operation will affect also the state of the
other system. Formally, two or more quantum systems are entangled if their
global state cannot be factorized as the tensor product of the states of the single
systems. For example, 1√

2
(|10〉 − |01〉) is an entangled quantum state of the

Hilbert space C
2 ⊗ C

2.
Now let us turn to rules. As stated above, in this paper we propose two

versions of quantum P systems. In the first version, rules are simply defined
as unitary operators which transform the state of their input qudits. This is
analogous to what happens with reversible logic gates, which act according to
their truth table. If a rule acts on n quantum systems, we say that it computes
an (n, d)–function, that is, a function f : An → An. Notice that, since rules are
defined by unitary operators, they are logically reversible. This means that f
is a permutation on the set An.

As an example let us assume d = 3, so that A =
{
|0〉 ,

∣∣ 1
2

〉
, |1〉

}
. If we want

to write the unitary operator which realizes the function f : A → A such that:

f(|0〉) =

∣∣∣∣
1

2

〉
, f

(∣∣∣∣
1

2

〉)
= |0〉 , f(|1〉) = |1〉

we can operate as follows. The unitary matrix is an order dn = 31 = 3 square
matrix having complex entries. Each row and each column is associated with
an element of An (in this case, A). If f(|x1, . . . , xn〉) = |y1, . . . , yn〉, then the
element of the matrix whose row and column is associated with |x1, . . . , xn〉 and
|y1, . . . , yn〉 respectively, is put to 1. All the other elements in the same row are
put to 0. Since f is bijective, also all the other elements in the same column are
put to 0. Continuing with the example, the unitary matrix which corresponds
to the function f : A → A described above is:

Uf =

0 1 0
1 0 0
0 0 1

Of course there exist also genuine quantum functions, i.e., functions that
have no classical counterpart and are thus characterized by the fact that some
input pure states (tensor product of vectors of the computational basis of C

d)
are transformed into non–trivial superpositions of pure states. An example of
an operation of this kind is the

√
Not function, acting on the states of a single

qubit, that can be thought of as the realization of a 1–register. Another genuine
quantum gate is the Hadamard gate, also acting on quantum registers of size 1.

151

Formally, the map H : C
2 → C

2 is described by the following order 2 unitary
matrix:

H :=
1√
2

[
1 1
1 −1

]

and the corresponding action on qubits is given by:

{
H |0〉 = 1√

2
|0〉 + 1√

2
|1〉

H |1〉 = 1√
2
|0〉 − 1√

2
|1〉

Our second proposal for quantum P systems is more complicated, but is in
some sense closer to physics laws. Objects are defined as in the first proposal,
whereas the definition of rules is directly inspired from energy–based P systems.
However, as we will see, differently from a classical energy–based P system, in
a quantum P system free energy units are not just symbols which move into
the system and cooperate with objects when the rules are applied. In quantum
P systems, free energy units are true quanta of energy (for example, photons)
which are necessary to transform a “low” energy state of a system to a higher
energy state. On the other hand, when a quantum system decays to a lower
energy state, it is understood that the difference of energy between the two
states is released in the form of energy quanta (e.g., photons).

In order to become more formal, let us consider the set Ed =
{

ε0, ε 1
d−1

,

ε 2
d−1

, . . . , ε d−2

d−1

, ε1

}
⊆ R of real values; we can think to such quantities as energy

values. To each element v ∈ Ld (and hence to each object |v〉 ∈ A) we associate
the energy level εv; moreover, let us assume that the values of Ed are all positive,
equispaced, and ordered according to the corresponding objects: 0 < ε0 <
ε 1

d−1
< · · · < ε d−2

d−1

< ε1. If we denote by ∆ε the gap between two adjacent

energy levels then the following linear relation holds:

εv = ε0 + ∆ε (d − 1) v ∀ v ∈ Ld (1)

Notice that it is not required that ε0 = ∆ε.
If x = |x1, . . . , xn〉 ∈ An is an n–configuration, we define the amount of

energy associated to x as En(x) =
∑n

i=1 εxi
, where εxi

∈ Ed is the amount of
energy associated to the i–th element |xi〉 of the configuration. Let us remark
that the map En : Ln

d → R
+ is indeed a family of mappings parameterized by

n, the size of the input. We say that a rule is conservative if, for any input
configuration x = |x1, . . . , xn〉 ∈ An, the corresponding output configuration
y = |y1, . . . , ym〉 ∈ Am is such that En(x) = Em(y). Rules are again defined
as (n, d)–functions, that is, functions of the kind f : An → An. The difference
with respect to the first proposal is that such functions are not necessarily
bijections on An: they can be arbitrary mappings. This means that the linear
operators which realize such functions are not necessarily unitary. Hence, we
need a method to build and describe them.

In this paper we present a quantum realization of rules using an extension of
the Conditional Quantum Control technique introduced in [2]. The technique

152

is used to write quantum operators which describe the behavior of classical
rules. Such operators are sums of “local” operators, each of which is a tensor
product of suitable compositions of the operators a† and a, which are the finite
dimensional versions of creation and annihilation operators usually found in
quantum mechanics. An equivalent formulation is also given, using spin–rising
(J+) and spin–lowering (J−) operators.

In the following sections we interpret the d energy levels of a quantum system
by the truncated quantum harmonic oscillator. Moreover, we introduce the
creation and annihilation operators on C

d, and we show how they can be used
to transform the state of a single quantum system, as required by the rules
which occur in energy–based P systems. An alternative description is also given,
using spin–rising and spin–lowering operators. Finally, we show how the linear
operators which correspond to rules can be built, using both a “brute force”
approach and an extension of the Conditional Quantum Control.

3 A mathematical model for quantum rules

3.1 The d–levels single system Hamiltonian

In describing a computation device it is important, from the point of view of
quantum mechanics, to give the Hamiltonian operator for the physical system
that constitutes the computing machinery. As it is well known, the Hamiltonian
operator describes the energy of the quantum system and allows one to derive
its time evolution.

The quantum realization of d–valued one–input/one–output rules can be
done by considering single quantum systems whose Hamiltonian on C

d is:

H =

ε0 0 . . . 0
0 ε0 + ∆ε . . . 0
...

...
. . .

...
0 0 . . . ε0 + (d − 1)∆ε

 (2)

The energy eigenvalues εk = ε0 +k∆ε of H, starting from the ground energy
state ε0 and equispaced by the quantum of energy ∆ε, are the ones of the infinite
dimensional quantum harmonic oscillator truncated at the (d−1)-th excited level
(see Figure 1).

The unit vector |H = εk〉 =
∣∣∣ k
d−1

〉
, for k ∈ {0, 1, . . . , d−1}, is the eigenvector

of the state of energy ε0 + k∆ε. The spectral resolution of the above truncated
harmonic oscillator Hamiltonian (2) is:

H =

d−1∑

k=0

(ε0 + k∆ε)Pεk

where each orthogonal projection Pεk
= P k

d−1
is the quantum realization of the

sharp event “a measure of the system energy yields the value ε0 + k∆ε”.

153

0

ε

ε

ε

ε

ε

0

0

0

0

0

+

+

+

+

∆

2

ε

∆ε

3 ∆ε

n ∆ε

ε∆

0

ε

ε

ε

0

0

0

+

+

∆

2

ε

∆ε

ε∆

Figure 1: Energy levels of the infinite dimensional (on the left) and of the
truncated (on the right) quantum harmonic oscillator

We can now introduce the creation and annihilation operators on the d–
dimensional Hilbert spaces C

d. Formally, creation and annihilation operators
on the Hilbert space C

d are respectively defined as:

a† =

0 0 · · · 0 0
1 0 · · · 0 0

0
√

2 · · · 0 0
...

...
. . .

...
...

0 0 · · ·
√

d − 1 0

a =

0 1 0 · · · 0

0 0
√

2 · · · 0
...

...
...

. . .
...

0 0 0 · · ·
√

d − 1
0 0 0 · · · 0

The operators a† and a are non–Hermitian, adjoints of each other, and satisfy
the following commutation and anticommutation relations, respectively:

[a, a†] =

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1 − d

[a, a†]+ =

1 0 · · · 0 0
0 3 · · · 0 0
...

...
...

. . .
...

0 0 · · · d − 3 0
0 0 · · · 0 d − 1

Thus, if one excludes the case d = 2 where the boson anticommutation rule is
satisfied, neither the fermion commutation rule [a, a†] = Id nor the anticummu-
tation rule [a, a†]+ = Id of the infinite dimensional case hold.

From these formulas it follows that the action of a† on the vectors of the
canonical orthonormal basis of C

d is the following:

a†
∣∣∣∣

k

d − 1

〉
=

√
k + 1

∣∣∣∣
k + 1

d − 1

〉
for k ∈ {0, 1, . . . , d − 2}

a† |1〉 = 0

154

whereas the action of a is:

a

∣∣∣∣
k

d − 1

〉
=

√
k

∣∣∣∣
k − 1

d − 1

〉
for k ∈ {1, 2, . . . , d − 1}

a |0〉 = 0

Using a† and a we can introduce the following operators:

N = a†a =

0 0 0 · · · 0
0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · d − 1

aa† =

1 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · d − 1 0
0 0 · · · 0 0

The eigenvalues of the self–adjoint operator N are 0, 1, 2, . . . , d − 1, and the

eigenvector corresponding to the generic eigenvalue k is |N = k〉 =
∣∣∣ k
d−1

〉
. This

corresponds to the notation adopted in [10], where the qudit base states are
denoted by |0〉 , |1〉 , . . . , |d − 1〉, and it is assumed that a qudit can be in a
superposition of the d base states:

c0 |0〉 + c1 |1〉 + . . . + cd−1 |d − 1〉

with ci ∈ C for i ∈ {0, 1, . . . , d − 1}, and |c0|2 + |c1|2 + . . . + |cd−1|2 = 1.
One possible physical interpretation of N is that it describes the number of

particles of physical systems consisting of a maximum number of d−1 particles.
In order to add a particle to the k particles state |N = k〉 (thus making it switch
to the “next” state |N = k + 1〉) we apply the creation operator a†, while to
remove a particle from this system (thus making it switch to the “previous” state
|N = k − 1〉) we apply the annihilation operator a. Since the maximum number
of particles that can be simultaneously in the system is d− 1, the application of
the creation operator to a full d−1 particles system does not have any effect on
the system, and returns as a result the null vector. Analogously, the application
of the annihilation operator to an empty particle system does not affect the
system and returns the null vector as a result.

Another physical interpretation of operators a† and a, by operator N , follows
from the possibility of expressing the Hamiltonian (2) as follows:

H = ε0 Id + ∆εN = ε0 Id + ∆ε a†a

In this case a† (resp., a) realizes the transition from the eigenstate of energy
εk = ε0 + k ∆ε to the “next” (resp., “previous”) eigenstate of energy εk+1 =
ε0 + (k + 1)∆ε (resp., εk−1 = ε0 + (k − 1)∆ε) for any 0 ≤ k < d − 1 (resp.,
0 < k ≤ d−1), while it collapses the last excited (resp., ground) state of energy
ε0 + (d − 1)∆ε (resp., ε0) to the null vector.

The collection of all linear operators on C
d is a d2–dimensional linear space

whose canonical basis is:

{Ex,y = |y〉 〈x| : x, y ∈ Ld}

155

Since Ex,y |x〉 = |y〉 and Ex,y |z〉 = 0 for every z ∈ Ld such that z 6= x, this
operator transforms the unit vector |x〉 into the unit vector |y〉, collapsing all
the other vectors of the canonical orthonormal basis of C

d into the null vector.
For i, j ∈ {0, 1, . . . , d−1}, the operator E i

d−1
,

j
d−1

can be represented as an order

d square matrix having 1 in position (j + 1, i + 1) and 0 in every other position:

E i
d−1

,
j

d−1

= (δr,j+1δi+1,s)r,s=1,2,...,d

Each of the operators Ex,y can be expressed, using the whole algebraic struc-
ture of the associative algebra of operators, as a suitable composition of creation
and annihilation operators.

We can use the whole algebraic structure (in particular, the composition op-
eration) of the associative algebra of operators to express any such operator (i.e.,
any order d complex matrix) as a linear combination of suitable compositions
of creations and annihilations. Precisely, if we denote by Ap,q,r

u,v the expression

v · · · v︸ ︷︷ ︸
r

v∗ · · · v∗
︸ ︷︷ ︸

q

v · · · v︸ ︷︷ ︸
p

u (3)

where u, v ∈ {a†, a}, v∗ is the adjoint of v, and p, q, r are non negative integer
values, then for any i, j ∈ {0, 1, . . . , d−1} we can express the operator E i

d−1
,

j
d−1

in terms of creation and annihilation as follows:

E i
d−1

,
j

d−1

=

√
j!

(d−1)!A
d−2,d−1−j,0
a†,a† if i = 0

√
j!

(d−1)!A
d−1,d−1−j,0
a,a† if i = 1 and j ≥ 1

√
i!

(d−1)!
√

j!
Ad−2−i,d−1,j

a†,a† if (i = 1, j = 0 and d ≥ 3) or
(1 < i < d − 2 and j ≤ i)√

j!

(d−1)!
√

i!
Ai−1,d−1,d−1−j

a,a if (i = d − 2, j = d − 1 and d ≥ 3)
or (1 < i < d − 2 and j > i)

1√
(d−1)!j!(d−1)

Ad−1,j,0
a†,a

if i = d − 2 and j ≤ d − 2

1√
(d−1)!j!

Ad−2,j,0
a,a if i = d − 1

3.2 The angular momentum interpretation of qudits

As it is well known, for a fixed integer d ≥ 2 the angular momentum based on the
Hilbert space C

d consists of the triple of self–adjoint operators J = (Jx, Jy, Jz).
Moreover, for j = d−1

2 , the real value j(j + 1) is an eigenvalue of the operator
J2 = J2

x +J2
y +J2

z . The matrix representation of the z component of this angular
momentum with respect to the orthonormal basis of its eigenvectors is:

Jz =

d−1
2 0 . . . 0 0
0 d−3

2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 3−d
2 0

0 0 . . . 0 1−d
2

156

Thus, the z component of the angular momentum can assume d possible eigen-
values:

m =
d − (2k + 1)

2
for k ∈ {0, 1, . . . , d − 1}

with corresponding eigenvectors:

∣∣∣∣Jz =
d − (2k + 1)

2

〉
=

∣∣∣∣
k

d − 1

〉
(4)

Let us consider the two operators J+ and J− on the Hilbert space C
d which

are obtained from the general angular momentum operators as:

J+ = Jx + iJy J− = Jx − iJy

The operators J+ and J− are non–Hermitian, adjoints of each other, and satisfy
the canonical commutation relation [J+, J−] = 2Jz. In matrix form they can be
expressed as follows:

J+ =

0
√

d − 1 0 · · · 0 0

0 0
√

2(d − 2) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · ·
√

2(d − 2) 0

0 0 0 · · · 0
√

d − 1
0 0 0 · · · 0 0

and

J− =

0 0 · · · 0 0 0√
d − 1 0 · · · 0 0 0

0
√

2(d − 2) · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · ·
√

2(d − 2) 0 0

0 0 · · · 0
√

d − 1 0

That is, for r, s ∈ {1, 2, . . . , d}, the element in position (r, s) of matrices J+ and
J− is, respectively:

(J+)r,s =
√

r(d − r)δr,s−1

(J−)r,s =
√

s(d − s)δr,s+1

As it is well known, the action of operators J+ and J− on the vectors of the
orthonormal basis of C

d formed by the eigenvectors of Jz is the following:

J+ |Jz = m〉 =
√

j(j + 1) − m(m + 1) |Jz = m + 1〉 for m = −j, . . . , j

157

and

J− |Jz = m〉 =
√

j(j + 1) − m(m − 1) |Jz = m − 1〉 for m = −j, . . . , j

Thus, we can interpret these operators as follows: the application of J+ has the
effect of changing the z component of the angular momentum to the next value.
If applied to a system which has already a maximum value of Jz, J+ leaves
the system unchanged and returns as a result the null vector. Analogously, the
application of J− has the effect of switching the system to the previous value of
the z component of the angular momentum. If applied to a system which has
already a minimum value of Jz, J− does not affect the system and returns as
a result the null vector. Usually, J+ and J− are called the spin–rising and the
spin–lowering operators, respectively.

The actions of J+ and J− on the vectors of the qudit orthonormal basis are
the following:

J+

∣∣∣∣
k

d − 1

〉
=

√
k(d − k)

∣∣∣∣
k − 1

d − 1

〉
for k ∈ {1, 2 . . . , d − 1}

J+ |0〉 = 0

and

J−

∣∣∣∣
k

d − 1

〉
=

√
(k + 1)(d − (k + 1))

∣∣∣∣
k + 1

d − 1

〉
for k ∈ {0, 1, . . . , d − 2}

J− |1〉 = 0

In particular, let us note that J+ switches a qudit to the previous element
in Ld, whereas J− switches it to the next element. The effect of operator J+ is
depicted on the left side of Figure 2 for a spin–1 system on the Hilbert space C

3.
On the right side of the same figure the annihilation action of the same operator
on a three–levels system is given for comparison with the previous behavior. A
similar figure with respect to J− can be drawn showing its spin–1 annihilation
action with respect to the eigenstate creation behavior.

Let us note also that in the Boolean case (that is, when d = 2) it holds:

a† = J− =

[
0 0
1 0

]
and a = J+ =

[
0 1
0 0

]

Therefore it holds also N = J−J+ and N ′ = J+J−, whereas in general, for
d > 2, such equalities do not hold.

We conclude this section by presenting the expressions that allow one to
obtain the operators E i

d−1
,

j
d−1

in terms of spin–rising and spin–lowering. Let

us consider the formal expression (3) applied to u, v ∈ {J+, J−}; moreover, let:

cr,s =

s∏

k=r

√
k(d − k)

d−1∏

k=1

k(d − k)

158

0

J+

+

+

J

J

>| 0

| −1 >

| +1 >

0

+J

+J

+J

>| 0

| 1/2 >

>| 1

Figure 2: The effect of the spin–rising operator on a spin–1 system and the
corresponding annihilation on three–level eigenstates

where s, r are two non negative integers. Then, for i, j ∈ {0, 1, . . . , d − 1} it
holds:

E i
d−1

,
j

d−1

=

c1,j Ad−2,d−1−j,0
J−,J−

if i = 0

c2,j Ad−1,d−1−j,0
J+,J−

if i = 1 and j ≥ 1

cj+1,i Ad−2−i,d−1,j
J−,J−

if (i = 1, j = 0 and d ≥ 3) or
(1 < i < d − 2 and j ≤ i)

ci+1,j Ai−1,d−1,d−1−j
J+,J+

if (i = d − 2, j = d − 1 and d ≥ 3) or
(1 < i < d − 2 and j > i)

c2,d−1−j Ad−1,j,0
J−,J+

if i = d − 2 and j ≤ d − 2

c1,d−1−j Ad−2,j,0
J+,J+

if i = d − 1

4 Quantum realization of rules

Now that we have a mathematical model to interpret objects as vectors of the
Hilbert space C

d, and the quantum version of rules as linear operators G :
⊗n

C
d → ⊗n

C
d which implement (n, d)–functions, let us address the following

problem.

Problem 1 Given the truth table of an (n, d)–function f : Ln
d → Ln

d , describe
the linear operator Gf : ⊗n

C
d → ⊗n

C
d that provides a quantum realization of

the rule as a formula containing only the linear operators Id2, a†, a and the
algebraic operations +, −, ◦, ⊗.

If the (n, d)–function f is reversible then we already know how to build the
corresponding (unitary) operator Gf . With the techniques we will introduce,
it is also immediate to write a formula which describes Gf . However, we are
interested to give a quantum description of all possible (n, d)–functions and

159

thus, as we will see in the following, generally the operators we will obtain are
not necessarily unitary.

In the next sections we expose two methods that can be used to build any
(n, d)–function: the so called “brute force” method, and an extension of the Con-
ditional Quantum Control method, originally proposed by Barenco, Deutsch,
Ekert and Jozsa in [2].

4.1 The “brute force” method

We can write the global operator Gf as a sum of so called local operators, by a
“brute force” procedure, where each local operator corresponds to a single row
of the table which describes the (n, d)–function. Precisely, in order to translate
the generic table row:

(x1, x2, . . . , xn) 7→ (y1, y2, . . . , yn)

meaning that the input n–tuple (x1, x2, . . . , xn) is transformed by the function
into the output n–tuple (y1, y2, . . . , yn), we build the “local” operator:

Ex1,y1
⊗ Ex2,y2

⊗ · · · ⊗ Exn,yn

where Ex,y := |y〉 〈x|, with x, y ∈ Ld, is the operator that transforms the single
qudit vector |x〉 into the vector |y〉, and returns the null vector if it is applied
to any other vector of the computational basis of C

d.
Hence, the operator Ex1,y1

⊗Ex2,y2
⊗· · ·⊗Exn,yn

transforms the input vector
|x1, x2, . . . , xn〉 ∈ ⊗n

C
d into the output vector |y1, y2, . . . , yn〉 ∈ ⊗n

C
d, whereas

it collapses all the other input vectors of the n–register computational basis to
the null vector.

Since each operator Ex,y can be expressed as an appropriate composition of
creation and annihilation (resp., spin–rising and spin–lowering) operators, we
can conclude that every local operator is a tensor product of suitable composi-
tions of creation and annihilation (resp., spin–rising and spin–lowering) opera-
tors.

4.2 The generalized “Conditional Quantum Control”
method

Let us now introduce a method derived from Conditional Quantum Control [2].
The quantum realization of a “controlled behavior” can be obtained by

making use of the operators PX = EX,X = |X〉 〈X|, for X ∈
{

0, 1
d−1 , 2

d−1 ,

. . . , d−2
d−1 , 1

}
. For simplicity, let us first consider the case of a (2, 2)–function.

For a reason that will be clear in a moment, we call control qubit and target
qubit the first and the second input, respectively. If we want to realize a linear
operator performing the condition: “if the control qubit is |1〉 then the operator
O1 is applied to the target qubit (and the control qubit is left unchanged)”,
then we can build the operator N ⊗O1, where N = E1,1 = |1〉 〈1| checks for the

160

condition “the control qubit is |1〉” and O1 is the operator which acts on the
target qubit |x2〉. Note that if the control qubit is |0〉 then the operator N ⊗O1

produces the null vector of C
2⊗C

2. Similarly, N ′⊗O0, with N ′ = E0,0 = |0〉 〈0|
realizes the condition “if the control qubit is |0〉 then the operator O0 is applied
to the target qubit |x2〉 (and the control qubit is left unchanged)”.

Notice that the method we are using here is a generalization of the Condi-
tional Quantum Control method introduced in [2]. In fact recall that in Con-
ditional Control (n, 2)–functions, 2k functions δ0, . . . , δ2k−1 are stored in the
memory of the control unit, the function δa being bijectively associated to the
control input configuration labelled by the integer number a ∈ {0, . . . , 2k − 1}
(see Figure 3). In [2] these functions are described through unitary operators
U0, U1, . . . , U2k−1, defined on the Hilbert space ⊗n−k

C
2; here we drop the re-

quirement that such operators, as well as the global operator defined on ⊗n
C

2,
be unitary. Moreover, in the following we apply this method to realize d–valued
operators.

2 −1
k

y
1

y
k

yn

y

1x

xk

x

nx

Control Unit

Operating Unit
k +1 k +1

U0 Uj U

Uj

function(n,2)−

Figure 3: Conditional Quantum Control: the function is divided into a con-
trol unit and an operating unit. The input values of the control unit select a
prescribed operator to be applied to the input values of the operating unit

Thus, when a configuration |x1, . . . , xk〉 is fed to the control unit of a Con-
ditional Control function two things happen:

1. the control configuration |x1, . . . , xk〉 is returned unchanged into the out-
put values of the control unit, and

2. the (non necessarily unitary) operator Ua bijectively associated to the
control configuration is selected and applied to the input configuration
|xk+1, . . . , xn〉 of the operating unit, producing the output configuration
Ua |xk+1, . . . , xn〉.

The global operator on [⊗k
C

2] ⊗ [⊗n−k
C

2] which describes the behavior of the

161

function can thus be written as:

P0 ⊗ U0 + P1 ⊗ U1 + . . . + P2k−1 ⊗ U2k−1 (5)

where Pa = Ea,a = |a〉 〈a| is the orthogonal projection of the Hilbert space ⊗k
C

2

which selects the a-th control configuration and collapses to the null vector
all the other control configurations, and Ua is the corresponding operator on
⊗n−k

C
2 which has to be applied to the target configuration. Making use of

Dirac notation, expression (5) can be equivalently written as (see [2]):

|0〉 〈0| ⊗ U0 + |1〉 〈1| ⊗ U1 + . . . + |2k − 1〉〈2k − 1| ⊗ U2k−1 (6)

A further extension of the Conditional Quantum Control method to
the d–valued case is immediate. If the (n, d)–function under considera-
tion can be divided as a k–input/k–output control unit and an (n − k)–
input/(n− k)–output target (also operating) unit, then any input configuration
|x1, . . . , xk, xk+1, . . . , xn〉 can be splitted into a control configuration |x1, . . . , xk〉
and a target configuration |xk+1, . . . , xn〉. The control configuration is returned
unchanged on the k output values of the control unit; as a side effect, it selects
one of the dk (non necessarily unitary) operators U0, U1, . . . , Udk−1, defined on
the Hilbert space ⊗n−k

C
d, stored into the control unit. The selected operator

is applied to the target configuration in order to produce the output values of
the target unit. The global operator that describes the behavior of the (n, d)–
function has now the form:

P0 ⊗ U0 + P1 ⊗ U1 + . . . + Pdk−1 ⊗ Udk−1 =
dk−1∑

X=0

PX ⊗ UX

where PX = EX,X = |X〉 〈X| is the orthogonal projection of the Hilbert space
⊗k

C
d which selects the X-th control configuration, and collapses to the null

vector all the other configurations. If many of the operators Ui are identical
then this expression is much shorter than the one obtained with the brute force
method. On the other hand, it is clear that the method derived from Conditional
Quantum Control cannot be used to describe every conceivable (n, d)–function,
since there are functions which cannot be divided into a control unit and an
operating unit.

5 Some problems and directions for future work

In this section we address some problems we have encountered while trying to
define quantum P systems. Since this is a work in progress, still in its early
stage, we would like to share these problems with the community. We hope
in this way to generate stimulating discussions on appropriate ways to define
quantum P systems.

A first problem which comes to mind when speaking about quantum systems
concerns the localization of objects. How can we be sure that an object will stay

162

for a long time into a region surrounded by a membrane? Indeed, one notable
feature of quantum systems is the so called “tunnel effect”, thanks to which
in every moment we have a positive probability that the object spontaneously
(i.e., without the application of any rule) leaves the current region. How should
we manage this situation? How can we control the computation (that is, the
behavior of the system) under the assumption that every object can be anywhere
with a non–zero probability?

The above problem is exacerbated by the fact that in classical P systems
the objects can be moved as the effect of the application of a rule. Precisely, in
classical energy–based P systems we can have a rule of the kind:

aek → (b, p)

where p ∈ {here, in(name), out} denotes the position of the new object b. This
means that the rule has to transform the object a into the object b, using k
units of free energy, and move b according to the prescribed position. In our
current definition of quantum energy–based P systems we have only addressed
the transformation of a into b. The object a will be represented as a pure state∣∣∣ `
d−1

〉
of C

d, with ` ∈ {0, 1, . . . , d − 1 − k}. Analogously, the object b will be

represented as the pure state
∣∣∣ `+k
d−1

〉
. The presence of k free energy units makes

the transition from
∣∣∣ `
d−1

〉
to

∣∣∣ `+k
d−1

〉
possible. Currently, the movement of

∣∣∣ `+k
d−1

〉

to the new position p is assumed to occur in the same way as in classical P
systems. However, this would imply the existence of a “magic” transportation
mechanism that, notwithstanding the tunnel effect, is able to pick up and move
a quantum system exactly as desired.

Another problem in the definition of a quantum P system derives from the
fact that the presence of k units of free energy enables the transition from any

state
∣∣∣ `
d−1

〉
of C

d, with ` ∈ {0, 1, . . . , d − 1 − k}, to the state
∣∣∣ `+k
d−1

〉
. Indeed, it

is tempting to translate the classical rule aek → (b, p) into the quantum rule:

∣∣∣∣
`

d − 1

〉
ek →

(∣∣∣∣
` + k

d − 1

〉
, p

)
(7)

Now assume that a given region contains two rules of this kind, possibly with
different values of ` and k. The presence of a big number of free energy units
(at least as many as the maximum of the two values of k) activates both rules.
This occurs even if k = 1 for both rules, and the region contains one free energy
unit. However, in this last case one rule or the other is correctly applied in a
nondeterministic way, as it happens in classical P systems. When k > 1 for
both rules, and the region contains some free energy units, we must avoid the
undesirable situation in which some free energy units modify the first object and
the remaining free energy units modify the second object. This occurs because
when we have written the quantum rule (7) we have implicitly assumed that
the k units of free energy must act simultaneously.

163

One possible solution to this problem would be to allow only transitions
which involve just one unit of free energy. However, we should check whether
these systems are computationally equivalent to the more general ones (we con-
jecture that the answer is affirmative).

The solution we have adopted in this paper involves the linear operators
Ex,y = |y〉 〈x|, with x, y ∈ Ld. The classical rule aek → (b, p) is translated as:

(
E `

d−1
, `+k

d−1

, p
)
≡

(∣∣∣∣
` + k

d − 1

〉〈
`

d − 1

∣∣∣∣ , p

)

In this way, the object
∣∣∣ `
d−1

〉
can only be transformed into

∣∣∣ `+k
d−1

〉
, and this

transformation requires k units of free energy to be performed.
Another observation concerning the use of quantum rules is the following. In

a classical P system, a rule of the kind aek → (b, p) is applied simultaneously to
every occurrence of a in the region, provided that enough free energy units are
present. Clearly, this is a mathematical abstraction. In a real quantum system,
there will be a subsystem — whose behavior is described by an appropriate linear
operator — which is devoted to transform an instance of a into an instance of
b, using k units of free energy. Hence, only one of such transformations at the
time is possible. How does this affect the computational power of quantum P
systems? Notice that P systems were originally inspired by the functioning of
living cells, and in living cells we have the same problem: a prescribed biological
mechanism is devoted to transform one (or a limited number of) instance(s) of
a into one (or the corresponding number of) instance(s) of b. Hence, even
in classical P systems the possibility to simultaneously apply a rule to every
instance of a is a mathematical abstraction.

Concerning the power of quantum P systems we note that, in analogy with
other models of quantum computers, there is the possibility to initialize the
system with a multiset of objects whose state is a superposition of classical
(that is, pure) states. As a result, the computation will transform such input
multiset to an output multiset which is obtained by linearity as a superposition
of the results of the computation on every single classical state. As usual, when
we measure the state of the systems which occur into the output multiset we will
obtain a pure state as a result, according to the probability distribution which
is induced by the coefficients of the superposition. Another interesting aspect
of quantum P systems is their behavior when some quantum systems from the
input multiset are in an entangled state.

Of course we advocate the study of the computational power of quantum P
systems, by comparing them both against their classical counterparts and other
quantum computational models. In particular, it would be useful to define a
quantum version of counter machines, since they have proven to be a useful and
powerful tool in the classical setting.

Last, but not the least, we pose the problem to write the linear operator
which describes an entire quantum P system, starting from the linear operators
which describe the single rules. Such global operator is important, from the
point of view of Quantum Computing, for the existence of a physical system

164

that behaves like the prescribed P system. Moreover, such operators are related
with the Hamiltonian of the system, which describes the internal energy of the
system. The difficulty of writing the global operator is due to the fact that in
quantum P systems, at each computation step a maximally parallel set of rules
is nondeterministically chosen and applied. This contrasts the deterministic na-
ture of the application of the global operator to the global state of the quantum
P system. One possible solution, in order to always select a maximally parallel
set of rules, would be to distribute the free energy contained into each region to
the rules of the region, sorted in increasing order with respect to the required
amount of free energy units. However, this would be equivalent to introducing
a priority between the rules of each region. We ask ourselves whether this is
appropriate or not.

We hope that all these problems will generate stimulating discussion on
quantum P systems. In this sense, they can all be considered a starting point
for future work.

6 Conclusions

In this paper we have introduced two quantum versions of energy–based P sys-
tems. Both versions are defined just like classical energy–based P systems, but
for objects and rules. Objects are represented as pure states in the Hilbert
space C

d, whereas the definition of rules differs between the two models. In the
former, rules are defined as bijective functions — implemented as unitary oper-
ators — which transform the objects from the alphabet. In the latter, rules are
defined as generic functions which map the alphabet into itself. Such functions
are implemented using a generalization of the Conditional Quantum Control
technique, and may yield to non–unitary operators. Finally, we have addressed
some problems and outlined some directions for future work.

Acknowledgments

We gratefully thank Gheorghe Păun, who prompted us to define quantum P
systems.

References

[1] G. Alford. Membrane systems with heat control. In Pre–Proceedings of the
Workshop on Membrane Computing, Curtea de Arges, Romania, August
2002.

[2] A. Barenco, D. Deutsch, A. Ekert, R. Jozsa. Conditional Quantum Control
and Logic Gates. Physical Review Letters, 74, 1995, pp. 4083–4086.

[3] P. Benioff. Quantum Mechanical Hamiltonian Models of Discrete Processes.
Journal of Mathematical Physics, 22, 1981, pp. 495–507.

165

[4] P. Benioff. Quantum Mechanical Hamiltonian Models of Computers. An-
nals of the New York Academy of Science, 480, 1986, pp. 475–486.

[5] D. Deutsch. Quantum Theory, the Church–Turing Principle, and the Uni-
versal Quantum Computer. Proceedings of the Royal Society of London, A
400, 1985, pp. 97–117.

[6] R. P. Feynman. Simulating Physics with Computers. International Journal
of Theoretical Physics, 21, No. 6–7, 1982, pp. 467–488.

[7] R. P. Feynman. Quantum Mechanical Computers. Optics News, 11, 1985,
pp. 11–20.

[8] R. Freund. Energy–Controlled P Systems. In Membrane Computing, Pro-
ceedings of the International Workshop WMC–CdeA 2002, Curtea de
Arges, Romania, August 2002, LNCS 2597, Springer, 2002, pp. 247–260.

[9] P. Frisco. The conformon–P system: a molecular and cell biology–inspired
computability model. Theoretical Computer Science, 312, 2004, pp. 295–
319.

[10] D. Gottesman. Fault–tolerant quantum computation with higher–
dimensional systems. Chaos, Solitons, and Fractals, 10, 1999, pp. 1749–
1758.

[11] J. Gruska. Quantum Computing. McGraw–Hill, 1999.

[12] A. Leporati, C. Zandron, G. Mauri. Simulating the Fredkin Gate with
Energy–Based P Systems. Journal of Universal Computer Science, 10, No.
5, 2004, pp. 600–619. A preliminary version is contained in [16], pp. 292–
308.

[13] A. Leporati, C. Zandron, G. Mauri. Universal families of Reversible P Sys-
tems. In Machines, Computation and Universality (MCU 2004), Saint–
Petersburg, Russia, September 21–26, 2004. To appear in Lecture Notes in
Computer Science.

[14] G. Păun. Computing with membranes. Journal of Computer and System
Sciences, 1, No. 61, 2000, pp. 108–143. See also Turku Centre for Computer
Science – TUCS Report No. 208, 1998.

[15] G. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin,
2002.

[16] G. Păun, A. Riscos Nuñez, A. Romero Jiménez, F. Sancho Caparrini
(Eds.). Second Brainstorming Week on Membrane Computing, Seville,
Spain, February 2–7, 2004. Department of Computer Sciences and Arti-
ficial Intelligence, University of Seville TR 01/2004.

[17] G. Păun, Y. Suzuki, H. Tanaka. P Systems with energy accounting. Inter-
national Journal Computer Math., 78, No. 3, 2001, pp. 343–364.

166

[18] The P systems Web page: http://psystems.disco.unimib.it/

167

168

A Typology of Imprecision

Solomon Marcus

Romanian Academy, Mathematics
Bucureşti, Romania

E-mail: solomon.marcus@imar.ro

1 Introduction

For about 300 years, scientific language takes its distance in respect to ordinary
language, just because the latter is no longer able to face the requirements of
rigor and precision of the former. In these conditions, it could look strange to
make of imprecision a goal of scientific investigation. The explanation of this
paradox is that there is no precise definition of precision, while the difference be-
tween mathematics and the other fields is that mathematics is dealing with exact
approximations, while in absence of mathematics we cope with . . . approximate
exactness.

When we relate mathematics to precision, we don’t have in view its object
of investigation, but only the nature of its approach. We are looking for a
precise approach to a world of imprecision. As a matter of fact, poetry too
involves a combination of precision and imprecision, as Baudelaire observed:
the psychological states determined by a work of art are imprecise, but the
means used to obtain this work are precise.

2 Abstraction, Approximation, and Generality

The first type of imprecision is abstraction, the move from five apples, five boxes,
five stones to “five”, with no other specification. The imprecise nature of ab-
straction is related to the imprecision related to its various ways of instantiation.
In absence of abstraction, mathematics is not possible.

The second type (historically speaking) of imprecision considered in mathe-
matics was approximation, from its elementary form (approximation

of an irrational number by rational ones), to approximation of the sum of
a series by a finite sum, then to approximation of a function by another one
(typical example: approximation of a continuous function by polynomials), ap-
proximation of the solution of a differential equation, etc. The traditional ap-
proximation is that where we are looking for finite approximations of countable

infinite structures, then for countable approximations of non-countable infinite
structures, etc. The novelty brought by computer science and by the modern
mathematics is the increasing importance of approximation of finite structures
by means of infinite ones. Typical in this respect is grammatical inference. In
formal language theory, the simplest example is the fact that the finite language
of powers of x from 1 to n cannot be generated by essentially less than n Chom-
skian rules (of a bounded size, e.g., regular), while the infinite language of all
powers of x going from 1 to infinite needs only two rules in order to generate it
by a Chomskian grammar.

The next types of imprecision were generality and genericity; may be they
are concomitant with approximation, but their typical form is related to the
birth of algebra, when we replace 5 by x. Let us observe also the importance of
generality and genericity in natural languages.

3 Randomness, Vagueness (Fuzziness), and
Ambiguity

The next type of imprecision coming into the attention of mathematics was (in
the 15th and the 16th century) randomness. It gave rise to probability theory,
developed by Pascal, Bernoulli, Laplace and others and reaching its modern
form in the 20th century, with Kolmogorov.

Already the Greek antiquity, then the modern times brought into atten-
tion the paradox (aporia), which, interpreted as a transgression of one of the
principles of Aristotelian logic, is a kind of imprecision, because it involves the
simultaneity of two opposite states (in case of transgression of the principle
of non-contradiction), or the lack of clarity, when the principle of identity is
transgressed, between identity and alterity. Similarly for the transgression of
principle of excluded middle, as it appears already in non-Euclidean geometry.

“Vagueness” was the title of a famous article by Black (1937) and we adopt
the hypothesis according to which its mathematical model is Zadeh’s fuzziness
(1965). About their equivalence, we bring as argument the view proposed by
Frege (1903): “The concept must have a sharp boundary. To the concept with-
out a sharp boundary there would correspond an area that does not have a
sharp boundary-line all around”.

Surprisingly, ambiguity, one of the most frequent form of imprecision, still
has no general mathematical representation. The word is so popular that it may
be a label for any type of imprecision. A reason of this gap could be the fact
that “ambiguity” itself is very ambiguous; it may mean “non-specificity”; “dis-
sonance” or “confusion”; “loss of information”, etc. (see, in this respect, Klir,
1987). Specific types of ambiguity were however investigated; see Empson (1930)
for literary-artistic ambiguity and Marcus, ed. (1981, 1983) for contextual am-
biguity, while ambiguity in formal grammars is presented in Rozenberg-Salomaa
(eds.) (1997).

170

4 Learn to Combine Various Types of Impreci-
sion

For a combination of some of the above considered types of imprecision, consider
the statement “If it will not rain and if it will not be cold, I will wait for
you tomorrow around 5 p.m., near the corner of the University”. We have
here randomness (rain), fuzziness (cold), approximation (around 5 p.m.), and
ambiguity (if the building of the University has several corners). This is the
typical situation with imprecision. Life situations bring together several types
of imprecision and we have to learn to cope with them in combination, not only
each of them on its own, as it happens in most cases.

5 Negligibility, Indiscernibility and Roughness

Negligibility concerns the global behavior of a set, of a function, of a class of
sets or of functions or of another entity for which the local-global distinction
makes sense. Negligibility refers usually to cardinality, measure or topology, but
other types are also possible. Examples: A real monotonous function defined
on the real interval [a, b] is continuous in each point of [a, b], except a countable
set; it is differentiable in each point of [a, b], except a set of Lebesgue measure
zero. Any real function defined on [a, b], which is in [a, b] the limit of a sequence
of continuous functions is continuous in each point of [a, b], except a set of
first Baire category (i.e., which is a countable union of rare sets). In the first
example, the exceptional set is negligible in respect to cardinality, in the second
example it is negligible in respect to Lebesgue measure, in the third example
it is negligible in respect to Baire category (which is of a topological nature).
In the theory of formal languages, “regular” may be considered negligible in
respect to “non-regular context-free”, while “context-free” may be considered
negligible in respect to “non context-free, but context-sensitive”, negligibility
being here considered in respect to Chomsky hierarchy of languages. Finite
sub-languages of a language L are negligible in respect to L if L is regular,
but infinite. It was proved by Marcus–Păun that some theorems concerning
convexity of sets, where negligibility is related to measure or to topology, have
their counterpart in problems related to convexity in formal languages, where
negligibility is considered just in respect to Chomsky hierarchy. Negligibility
is considered also in the theory of recursive functions, mainly in respect to
topology.

Indiscernibility was approached by Pawlak (1982) by means of his concept of
a rough set, today a very well-known topic in Computer Science and in Artificial
Intelligence. It is considered in respect to an information system, consisting of
a set of objects and a set of criteria (such as size, color, material, weight etc.).
Each criterion has various possible values; for instance, color may be green, red,
yellow, blue, black, white etc. To each object we associate its values in respect
to the considered criteria. Selecting a value for each criterion, we may consider
the set A of objects with the respective values; it will be approximated from

171

its interior by the set int(A) of objects having with certainly the respective
values and from its exterior by the set ext(A) of objects which possibly have the
respective values. We may always assert that int(A) is contained in ext(A); their
ordered pair is a rough set. If int(A) = ext(A), then we have a usual set. Taking
into account that this approach is based on the idea of similarity (two objects
having the same values in respect to all criteria are similar) and observing that
similarity is a tolerance relation (i.e., reflexive and symmetric) rather than an
equivalence relation, as it is considered in Pawlak’s approach, Marcus (1993)
considered tolerance rough sets (see synonymy in natural languages and the
relation “smaller than” considered by Zeeman in its topology of the brain).

Rough sets showed their relevance in approaching other types of impreci-
sion, such as fuzziness (Pawlak–Skowron 1993), evidence (Shafer 1976; Skowron
1993), inconsistency (Grzymala-Busse 1992) and vagueness (Pawlak 1992).

6 Plausibility, Possibility, Credibility, Uncer-
tainty

The first three of them are favored topics in Logic and in Artificial Intelligence,
as it can be seen, for instance, in Klir(1987), Klir and Folger (1988). Uncertainty
is among the most fashionable topics; see, for instance, Kline (1980), Klir (1987),
Klir and Folger (1988), Smithson (1989). Kline’s slogan “Mathematics: the loss
of certainty” was preceded by Heisenberg’s uncertainty principle (1927) and has
been followed by a similar slogan by Prigogine (“La fin des certitudes”). Both
physics and mathematics are involved here. Gödel’s incompleteness theorem
seems to be a basic motivation of this pessimistic view. As a matter of fact,
it is not the loss of certainty the right phenomenon we have to face here, but
the fact that the previous feeling of certainty was determined by our ignorance;
as soon as we became aware of how things happen, the mistake was no longer
possible. The same thing is valid in respect to certainty in physics.

But we can go further and ask: is certainty the natural state of human
psychic? The answer is rather negative. Human beings are characterized by a
state of tension, of restlessness stimulating him to learn more and more and to be
more and more creative, in order to diminish the gap between their limitations
and life’s and world’s mystery.

7 Absence of Cohesion and Lack of Coherence

Within a social group G, the link between two parts A and B of G can be
evaluated by the product between the cardinal number of the common part of
A and B and the cardinal number of the symmetric difference of A and B (Bunge
1971). In this product, the first factor refers to the common participation, while
the second one to the heterogeneity of A and B. From another direction, related
to language aspects and to linguistics, we observe that cohesion refers rather
to the syntactic aspect, while coherence refers to the semantic one. We can

172

speak of the cohesion of a text if its parts are organically related. The first idea
coming in mind is the topological notion of connectedness. Connectedness of
what? Lipsky (1974), Saloni–Trybulec (1974) and Brainerd (1977) proposed as
a mathematical model of the cohesion of a statement s, the connectedness of
the dependency and subordination graph G associated to s (see, in this respect,
the last chapter in our Algebraic Linguistics, Academic Press, New York, 1967).
If we proceed in this way, then the lack of cohesion is measured by the smallest
positive integer n such that there exist, in G, n arcs with the property that if we
delete them, then the obtained graph is connected. When n = 0, the statement
s has the cohesion property. The proposition (having as its mathematical model
a rooted tree) is the simplest example of linguistic cohesion.

We can extend this approach to obtain a model of lack of coherence, if we use
an idea by Irena Bellert (1970), permitting to associate to the statement s not
only a syntactic graph, as above, but also a semantic graph; it can be obtained
by defining a relation of semantic dependency. A term a of s is semantically
dependent of a term b of s if the semantic interpretation of a depends on the
semantic interpretation of b. The reflexive and transitive closure of this relation
leads to the semantic graph H of s. If H is connected, then s is coherent. If not,
then a measure of the lack of coherence of s is given by the smallest positive
integer n such that there exist n arcs of H with the property that if we delete
them from H, then the remaining graph is connected.

For a global view on textual cohesion and textual coherence see S. Marcus,
“Textual cohesion and textual coherence”, Revue Roumaine de Linguistique, 25,
2 (1980), 101–112.

8 Measures of Graduality

The graduality f(A) of a set A, conceived as something opposed to the idea of
precise set A (as in Cantorian set theory), should fulfill some intuitive require-
ments: f(A) = 0 iff A is precise; if B is more gradual than A, then f(A) < f(B)
or f(A) = f(B); f(A) takes the maximal value iff A is maximally gradual (but
let us observe that it may happen that maximality does not exist). A. de Luca
and S. Termini (1972) define a measure of graduality taking as a model the
entropy:

f(A) = −
∑

x∈X

(m(A, x)log2(m(A, x)) + (1 − m(A, x))log2(1 − m(A, x))),

where, if A is not more gradual than B, then m(A, x) ≤ m(B, x) when
m(B, x) ≤ 1/2, and m(A, x) ≤ m(B, x) when m(B, x) ≥ 1, for any x ∈ X.
Maximal graduality corresponds to the degree of belongingness equal to 1/2 for
any x ∈ X.

Another measure was proposed by A. Kaufmann (1975):

f(A) =
∑

x∈X

(|m(A, x) − m(C, x)|),

173

where C is a precise set for which m(C, x) is equal to zero if m(A, x) ≤ 1/2, and
m(C, x) = 1 if m(A, x) > 1/2.

A larger class of measures of graduality was proposed by S.G. Loo (1977).
According to R.R. Yager (1979), the most natural way to express graduality of A
is to require the absence of a sharp distinction between A and its complementary
set c(A). If A is gradual, then c(A) is given by a mapping c : [0, 1] → [0, 1],
associating to each value m(A, x) a value c(m(A, x)) expressing the degree of
belongingness of x to c(A). The mapping c is required to be non-increasing, to
take value 1 in origin and value zero in 1. This means that, if A is precise, then
c becomes the classical complementary set. Sometimes it is also required to c
to be continuous and involutive: c(c(a)) = a for any a between 0 and 1. See
for more G.J. Klir, “Where do we stand on measures of uncertainty, ambiguity,
fuzziness, and the like”, Fuzzy Sets and Systems, 24 (1987), 140–160.

It seems that there are distinctions which are not yet considered. It may
happen that a graduality is not associated to a phenomenon of imprecision, in
respect to the distinction between a property and its negation. The property
of water to be liquid is not vague (fuzzy) in Zadeh’s sense, because the move
from liquid to non-liquid is exactly at zero or at 100 degrees. However, the
same move is gradual, the water at 70 degrees is nearer to gaseous state than
the water at 60 degrees. By contrast, an explosion of a plain during a flight,
following the clash with another plain, is not at all gradual.

9 Confidence, Plausibility and Ignorance

The already mentioned paper by Klir (1987) reminds some other proposed mea-
sures of various types of imprecision. Starting from a basic probability m as-
sociating to each subset A of X a number m(A) between 0 and 1, such that
m(O) = 0 and

∑
A⊆X m(A) = 1, one can say that m(A) defines the degree of

confidence that a specific element of X belongs to A. The corresponding “mea-
sure of confidence” is given by a mapping f associating to each part A of X a
number f(A) between 0 and 1, such that f(A) =

∑
B⊆A m(B). The number

f(A) gives the total degree of confidence that a considered element belongs to
A or to an arbitrary subset of A.

The “measure of plausibility” is given by a mapping g associating to each
part A of X a number g(A) between 0 and 1, such that g(A) =

∑
B∩A 6=∅ m(B)..

There is a link between the measure of confidence and the measure of plausibil-
ity: g(A) = 1 − f(X − A).

The “total ignorance” is expressed by m(X) = 1 and m(A) = 0 for any A
different from X; therefore, f(X) = 1 and f(A) = 0 for any A different from
X and g(O) = 0, g(A) = 1 for any non-empty A. As a particular case of the
measure of plausibility, we get the “measure of possibility”. For bibliographic
references and for more details, see Klir (1987).

174

10 Hartley, Shannon, Renyi, Higashi, Klir on
Ambiguity

We have already pointed out the ambiguity of the phenomenon of ambiguity.
We will call into attention a few cases when the mathematics of ambiguity was
successful.

A first approach belongs to Hartley (1928) and refers to ambiguity as non-
specificity. It is given by A(N) = k.logbN , where N is the total number of
variants involved in a system, while k is a strictly positive constant. For k = 1
and b = 2, the measure A(N) of non-specificity is evaluated in bits. Alfred
Renyi has shown that the mapping A(N) measuring the ambiguity involved
in the selection of an element in a set can be structurally characterized by
three properties: A(N × M) = A(N) + A(M) (additivity) (N,M = 1, 2, 3, ...);
A(N) ≤ A(N + 1) (monotonicity); A(2) = 1 (normalization).

Other measures of non-specificity were proposed by M. Higashi and G.J.
Klir (1982, 1983). Given a normalized distribution p = (p(x);xinX),
max(p(x);xinX) = 1, of possibilities on X, the measure of non-specificity is
given by the integral from 0 to 1 of the logarithm in base 2 of the cardinal
number of the section c(p, x) associated with x.

The measure of the classical ambiguity conceived as dissonance or confusion
is just Shannon’s entropy in respect to a probability distribution.

Ambiguity as loss of information has been investigated by J.L. Dolby (1977).
For more details, see Klir (1987).

11 Contextual Ambiguity in Languages and in
Medical Diagnosis

Given a finite non-empty alphabet A and a language L on A, the word x on A
contextually dominates the word y on A in respect to L if for any two words
u and v, such that uxv ∈ L, we have uyv ∈ L. In other words, x contextually
dominates y in respect to L if any context accepting x ∈ L accepts also y ∈ L.
The interpretation of this fact is: when x contextually dominates y in respect
to L, the contextual ambiguity of x in respect to L is not larger than the
contextual ambiguity of y in respect to L. Things become very clear when
x and y are of length one, i.e, elements of A, interpreted as the vocabulary
of a natural language. Then, in French, for instance, we observe that ’beau’
contextually dominates ’douce’, but the converse is not true, because ’douce
nuit’ is well-formed in French, while ’beau nuit’ is no longer well-formed. The
relation of reciprocal domination is an equivalence relation, in respect to which
strings on A are organized in equivalence classes, called ’distributional classes’.
To any natural language we can associate the graph of its distributional classes.
However, since a natural language is not a precise set (as a matter of fact,
its status in respect to the typology of imprecision is not clear, because, for
instance, it should be both finite and infinite; see Charles Hockett), we limit

175

discussion to a precise subset of a natural language, i.e., to what is called one
of its levels of grammaticality. We also limit the discussion to the distributional
classes of the vocabulary of the language, in order to cope with a finite graph.
In the graph G so obtained, we have a line from the vertex x to the vertex y if
any element in the distributional class x contextually dominates the elements
in the distributional class y. The number of different lines leading to the same
vertex a is a measure of the contextual ambiguity of words in a, called their
“index of ambiguity”.

In the monograph Contextual ambiguities in natural and in artificial lan-
guages (ed. S. Marcus), volume 1, 1981, volume 2, 1983, Communication
and Cognition, Ghent, Belgium, contextual ambiguity is examined in English,
French, Hungarian and Romanian and in Fortran IV, Assiris and Pascal. It was
shown that in the considered programming languages contextual ambiguity is
very poor, while in natural languages it is very rich.

In English, in respect to a level of grammaticality higher than that
of noun groups and of verb groups, there are 14 types of contextual am-
biguity, represented, in the increasing order of their index of ambiguity,
by words like ’receive’(index=1), ’isolate’(index=2), ’often’(3), ’death’(4),
’rain’(5),’see’(6), ’cry’(7), ’iron’(8), ’hang’(9), ’round’(10), ’fly’(11), ’run’(12),
’wash’(13), ’call’(14).

The same mathematical model can be applied to medical diagnosis, if the
alphabet A is formed by various possible symptoms of a disease. Words on A
include in this case various possible clinical examinations (syndroms). We can
define the degree of ambiguity of a diagnosis, having its lower limit in the case of
pathognomonic symptoms, able to indicate with no ambiguity a specific disease.
See, for more, Eugen Celan - Solomon Marcus, Le diagnostique comme langage,
Cahiers de Linguistique Theorique et Appliquee, 10, 2 (1973), 163–173.

12 Eubulides, Zadeh and Sugeno on Graduality

The imprecision resulting from absence of a clear (sharp) border between a
property and its negation, between a set and its complement has been observed
already by the old Greeks; see Eubulides’ paradox of the heap of grains and of
baldness. However, Zadeh’s (1965) fuzziness, where the characteristic function
of a set A contained in the total set X is replaced by a mapping associating to
each element in X a number in the compact interval [0, 1] (value representing
the degree of belongingness to A), does not capture successfully Eubulides’
examples. Both fuzziness and roughness remain irrelevant in respect to these
old paradoxes, as we have already shown (Marcus 1999).

An alternative to Zadeh’s approach was proposed by M. Sugeno (1977), who
considers, for each element x ∈ X, a mapping g(x) associating to every part A
of X a value g(x,A) ∈ [0, 1], representing the degree of belongingness of x to
A. We have g(x,O) = 0, g(x,X) = 1, while for A contained in B g(x,A) is not
larger than g(x,B).

In all its variants, the definition of graduality uses non-graduality, i.e., sets

176

which are no longer gradual. For instance, the set of points where Zadeh’s
mapping takes a definite value is no longer fuzzy, it is a set in the classical
sense. If however we allow for it to be fuzzy, then we move the problem to the
next level. The last meta-level will always be no longer fuzzy.

Another difficulty is related to the behavior of the values 0 and 1. For most
properties, there is no way to assign these values. How could we assign the
values 0 and 1 in the case of a property such as ’beautiful’ or ’clever’? How can
we assign the value 1 in the case of ’non-bald’?

13 Numerical Negligibility and the Crisis of
Classical Probability

We have in view a history beginning with Leibniz, who refers to infinitely small
quantities,different from zero, but smaller than any number of the form 1/n,
where n is a strictly positive integer. Mathematicians in the XVIIIth and XIXth
centuries were not able to make meaningful Leibniz’s proposal, so they replaced
it with another version, where the infinitely small is no longer a fixed quantity,
but a function which, in some point, has zero as its limit. One can introduce
also the order of an infinitely small. The function f is infinitely small of order
n at the point a if the ratio between f(x) and the power n of x − a has the
limit zero when x is approaching a. A fundamental problem in mathematical
analysis is to make the error of approximation of a function to be infinitely small
of order as high as we want. Higher is this order, better is the approximation.
A typical example is the approximation of a continuous function by polynomial
functions.

The above phenomenon concerns numerical negligibility of various orders.
The numerical negligibility conceived by Leibniz received a coherent interpre-
tation from Abraham Robinson, with his non-standard analysis, in the ’60th
of the XXth century. He conceived a universe larger than the universe of real
numbers, under the form of a totally ordered field larger than the field of real
numbers; in contrast with the latter, the former is no longer archimedean (i.e., it
is no longer true that for any two positive elements a and b there exists a natural
number n such that na > b). It can be observed that Leibniz’s infinitely small is
just the negation of Archimede’s axiom. To give only one example of a situation
requiring just a non-standard approach, let us consider the classical notion of
probability, where the probability of a number in [0, 1] to be in a subinterval of
length m < 1 is just equal to m. Then, what is the probability of the number
x ∈ [0, 1] to be equal to 1/2? Since 1/2 is contained in subintervals of length m
with m as small as we want, it follows that the only coherent solution is to give
to the probability of x to be equal to 1/2 the value zero. This happens if we
remain in the framework of classical analysis and classical probability theory.
But we cannot be satisfied with this ’solution’, because it is in contradiction
with the intuitive fact that x can be really equal to 1/2. The shortcoming of
probability theory, conceived as a measure, is just this gap between impossibility

177

and zero probability; they should be equivalent, but, unfortunately, impossibil-
ity implies zero probability, while the converse is not true. The solution is to
consider that the probability of x to be equal to 1/2 is just an infinitely small
in the Leibnizian sense, which is possible in the non-Archimedean framework
conceived by Robinson.

14 Randomness and Its Intuitive Base

At the beginning of the XXth century, Emile Borel defined an infinite random
sequence r on the binary alphabet {0, 1} by the property that each of the bi-
nary digits 0 and 1 has the same probability of appearance in r. More precisely,
denoting by p(0, n) (p(1, n)) the probability to have zero (one) in the prefix of
length n of r, the limit of p(0, n) (p(1, n)) when n tends to infinite is equal to
1/2 (1/2 respectively). Similarly one can define the randomness of an infinite
sequence on an arbitrary finite alphabet. This type of randomness was called
by Borel ’normality’. Real numbers in their decimal writing are infinite se-
quences on the alphabet {0, 1, 2, ..., 9}. The basic result obtained by Borel was
that almost all real numbers are normal. ’Almost’ means here ’except a set of
Lebesgue measure zero’. On the other hand, it was shown later, by J.C. Oxtoby
and S. Ulam (Annals of Math., 42, 1941, 874–920) that the set of non-normal
real numbers, which is negligible in respect to Lebesgue measure (according to
Borel’s theorem) is no longer negligible in respect to Baire category. In other
words, normality is an exceptional property, in the sense that normal numbers
form a set of first Baire category (i.e., it is a countable union of rare sets),
while non-normal numbers no longer have this property. This fact shows how
misleading can be, from an intuitive viewpoint, the mathematical terminology.

There is also another trap of theorems like those by Borel and Oxtoby-Ulam:
they give an information of a global nature, having no counterpart from a local
viewpoint. For instance, for most familiar numbers such as square root of 2
or number π we are ignorant whether they are or not normal. This feature is
characteristic for most, if not all theorems involving global negligibility.

Defining randomness as normality proved to be unsatisfactory, as it can be
seen on the sequence obtained by writing, in lexicographic order, all finite se-
quences of length 1, 2, 3, ... on a given alphabet. The resulting infinite sequence
will be obviously normal, despite the fact that it was written according to a very
clear rule. Such a situation is in conflict with the most primitive representation
of randomness, as absence of rule. The considered example shows also why
a stronger requirement such as to require to all sequences of the same length
on the considered alphabet to have the same probability of appearance in the
considered infinite sequence is also not acceptable as a mathematical model of
randomness. Richard von Mises (1919) proposed then to impose Borel’s prop-
erty (the law of large numbers) also to some subsequences, according to some
rules. But this restriction too proved to be insufficient. Some next proposals (A.
Wald, 1937; A. Church, 1940) tried to impose to the selection rules proposed by
von Mises a constructive character. The critical analysis of all these attempts,

178

made by Michiel van Lambalgen (Von Mises’s definition of random sequences
reconsidered, J. of Symbolic Logic, 52, 1987, 3, 725–755) reaches the conclu-
sion that in the framework of classical mathematics (Platonistic, as he calls it)
there is no satisfactory possibility to formalize randomness. Trying however
to recuperate von Mises’ intuitions, Lambalgen finds that the most acceptable
solution is to adopt the approach based on sequential tests, proposed by P.
Martin-Loef (1966) and studied further by C.P. Schnorr (1971). If an infinite
sequence is random according to Martin-Loef, then almost all its subsequences
are also random.

Progress in this direction is looking for more and more weaker conditions,
that however still refuse to be sufficient conditions of randomness. Pure(total)
randomness seems to can be only approximated, asymptotically approached.

What is, intuitively speaking, randomness? equal preference, absence of rule,
total imprevisibility, highest possible complexity? Can they be simultaneously
satisfied? It seems that the answer is negative.

15 Disorder as Entropy versus Order as Infor-
mation

In a thermodynamic perspective, information was identified, in the second half
of the XIXth century, with order and organization, as opposed to disorder, chaos
and entropy. The notion of entropy, introduced by Clausius and reconsidered
by Boltzmann and Helmholtz, leads to the evaluation of the thermodynamic
order as the difference between the maximum possible entropy and the real
entropy; just this order expresses the thermodynamic meaning of information.
The second principle of thermodynamics indicates the trend of the physical
world towards the increasing of entropy, i.e., of disorder. But, as Prigogine
showed, within this ocean of increasing entropy the human being creates an
island of decreasing entropy. According to George Birkhoff, the artistic beauty of
an object is given by the ratio between its order and its complexity. According to
Karl Popper, a statement says about the empirical reality just what it interdicts
to it. Both Birkhoff and Popper wrote in the thirties of the XXth century, i.e.,
20 years before Shannon’s information theory, based on the same philosophy.
Information means reduction of disorder.

16 Randomness for Finite and for Infinite
Strings

Roughly speaking, according to Kolmogorov and Chaitin, a finite string x over
a finite non-empty alphabet A is random if no computer program describing x
is shorter than x. This definition is related to a way to look at the algorithmic
complexity of x, in respect to which randomness expresses the highest possi-
ble complexity of x. Larger is the difference between the length of x and the

179

length of the shortest possible computer program describing x, smaller is the
algorithmic complexity of x. When this difference is zero, x is random.

Surprisingly, this way to look at complexity is similar to the way a specific
type of poetry is considered by some literary critics, as a text in which nothing
can be deleted, added or modified and no abstract is possible. So, poetry
corresponds to highest complexity.

There is a huge discrepancy between the global and the local behavior of
randomness of finite strings. On the one hand, in some sense (which is specified
mathematically; see the above idea of global negligibility) most finite strings
are random; on the other hand, no instantiation of a random finite string is
possible. By analogy, we may have an idea of this phenomenon if we think to
what means to consider an arbitrary triangle; as soon as you try to represent it
on a piece of paper, it is no longer arbitrary. It is interesting to observe the basic
difference between The Kolmogorov- Chaitin approach and Shannon’s approach
in his ’information theory’. The former is dealing with individual entities, while
the latter considers the global aspect. Shannon’s theory makes sense in respect
to a probability distribution in a system having various possible states, while
Kolmogorov and Chaitin refer to individual strings over A.

Starting from randomness in finite strings, we may obtain a natural approach
to randomness of an infinite string s over A. We define the randomness of s by
requiring the randomness of all prefixes of s.

Infinite random strings on A have nice properties, that may be considered
far from our intuitive expectations: If s is random, then any possible finite
string over A occurs infinitely many times in s. This means, for instance, if A
is the alphabet of English, that s will include infinitely many times the whole
work of Shakespeare and of any other English writer. But this fact shows that
global randomness implies local non-randomness. On the other hand, if we start
with a random finite string x and we consider the infinite string obtained by
concatenation of x with itself infinitely many times, xxx...x..., then we obtain
a periodic infinite string, i.e., a non-random string.

17 The Analytic Approach to Deterministic
Chaos

Besides the traditional chaos, associated with probabilistic systems, there is also
the deterministic chaos, associated with deterministic systems. Small differences
of initial conditions of a dynamical system may lead to huge differences in the
behavior of the system. The analytic approach to this phenomenon is possible
in the following way:

Let I be a real compact interval and let f be a continuous mapping from
I into I. A point p ∈ I is considered periodic for f if there exists a strictly
positive integer n such that the value of the iterated of order n of f in p is
equal to f(p). The smallest n with this property is considered the period of
p. Given a strictly positive number a, f is considered a-chaotic if there exists

180

a perfect subset S (i.e., a set which is identical to the set of its accumulation
points) of I with the property that, for any two distinct points x and y of S
and for any periodic point p of f , the the following properties take place: the
difference between the iterates of order n of f in x and y has, in absolute value,
its inferior limit (when n tends to infinite) equal to zero, while its superior limit
remains larger than or equal to a; the difference between the iterates of order
n of f in the points x and p has, in absolute value, its superior limit (when
n tends to infinite) larger than or equal to a. As it was shown by K. Jankova
and J. Smital (A characterization of chaos, Bull. of Australian Math. Soc., 34
(1986), 283–292), this notion is equivalent to that considered previously by Li
and J. Yorke in 1975, in order to approach a problem in biology.

As it was shown by J. Smital(Chaotic functions with zero topological entropy,
Trans. Amer. Math. Soc., 297 (1986), 269–282), any continuous function f
which is chaotic for no a strictly positive has the following property: for any
x ∈ I and for any a strictly positive, there is a periodic point p, such that
the difference between the iterates of order n of f in x and p has, in absolute
value, its superior limit (when n tends to infinity) strictly inferior to a. In
other words, for a continuous mapping f from I into I which is not chaotic, any
trajectory can be approximated by cycles. Practically, this behavior cannot be
distinguished from the asymptotic periodicity of the trajectories. Non-chaotic
continuous mappings can serve as deterministic mathematical models of some
real processes.

18 Smale’s Horseshoe

Almost any system with a chaotic behavior includes as one of its components
a certain dynamical system (or its continuous variant) discovered by Stephen
Smale and known under the name ’Smale horseshoe’. Chronologically, this was
one of the first dynamical systems where the sensible dependency on the initial
conditions has been understood in a rigorous and complete way.

Let us consider a mapping f defined on the interval [0, 1] and associating
to each x ∈ [0, 1] the fractional part of 2x, i.e., the difference between 2x and
the largest integer which is not larger than 2x. The mapping f defines one of
the simplest dynamical systems; looking at its functioning, we will be nearer
to the understanding of the ’paradox of the deterministic randomness’. Let
us represent x in base 2. We have f(x) = 2x if x < 1/2, f(x) = 0 if x =
1/2, f(x) = 2x − 1 if 1/2 < x < 1 and f(1) = 0. It follows, for instance, that
f(0, 11) = 0.1, f(0, 111) = 1.11 − 1 = 0.11 and, by induction, if x = 0.11...1,
where 1 appears n+1 times after coma, then f(x) = 0.11...1, where 1 appears n
times after coma. In other words, the mapping f moves with one digit at right
the position of the coma and replaces with zero the first occurrence of 1.

This dynamical system is defined by the iterative application of the mapping
f , iteration made possible by the fact that the values of f are situated in the
interval of definition of f . The system has inputs and outputs. To an input
x between 0 and 1 corresponds an output f(f...f(x)...), where the number of

181

left parentheses is equal to the number of right parentheses and both are equal
to the number of applications of the mapping f . Let us consider the input
x = 0.11...1, where 1 appears 30 times after coma. With each application of
f , the number of occurrences of 1 after coma diminishes with one, so, after 30
iterations of f , the ’initial condition’, under the form of the input x, will be
completely neutralized. In other words, after a sufficient large iterations of f ,
the result is no longer dependent on the starting point (the initial state of the
system) and the behavior gets a random aspect.

This is the type of mechanism explaining the behavior of most chaotic dy-
namical systems.

19 Chaos in the Evolution of a Population

Let us refer to the evolution of a population of a given species (human beings
included). Its evolution in time is described by a mapping iteratively applied to
some initial data, related to the state of the considered population at a given
initial moment. The first application gives the evolution of the population after
one year, n iterations gives the evolution after n years. But how should we
choose the form of the mapping? Accepting that the population is growing with
some percentage, the same every year, we are lead to a linear function, i.e., of
the form f(x) = ax, where a is a constant defining the rate of growth. If, for
instance, x = 1000 and the rate is equal to 1.1, then, after a year, the population
will be 1.100; after one more year, 1210 etc. This was the scenario proposed by
THomas Robert Malthus in respect to the population growth. There is no room
in this scenario for various economic, social, psychological, moral parameters.
Already in the first part of the XXth century, Vito Volterra has investigated,
by means of the theory of differential equations, the evolution of some species.
Researchers agree now that the mapping f should be selected in order to fulfill the
following three conditions: rapid growth if the considered population is small;
reduction of the growth until some values near to zero, if the population is of
an intermediary size; diminution, if the population is very large. A function
satisfying these requirements could be f(x) = ax(1 − x). In this case, the
population will be expressed by a number between 0 and 1.

To the function above one associates an equation with differences, called the
’logistic equation’, considered successively with various modifications, in order
to adapt it to various situations. Most authors agreed that, after some growth
and some oscillation, a population has a trend of stability around an equilibrium
value. THis idea is firmly expressed by J. Maynard Smith (“Mathematical ideas
in biology”, 1968), according to which populations get stable or oscillates with
’a regular enough periodicity’ around an equilibrium point.

From another direction, related to meteorology (Lorenz) and further devel-
oped by Smale and Yorke, we reach the mapping already considered (Smale
horseshoe). On the other hand, Robert May tried to investigate a population
of fishes, by means of the already mentioned logistic equation. Its numerical
investigation revealed surprising results. At the frontier between stability and

182

oscillation. For a = 2.7, the population proved to be equal to 0.6292. By suc-
cessive increasing the value of the parameter a, the population is increasing. As
soon as the parameter a crosses the value 3, the imaginary population of fishes
considered by May begins to oscillate, some times with a period of two years,
other times with a period of four years. But beyond some point this periodicity
becomes chaos. James Yorke has investigated this behavior in a paper with
the significant title “Period three implies chaos” (published in American Math.
Monthly).

*

Many other things remain to be said. Unfortunately, we have to stop here.
For a common denominator of many of these types of imprecision, under the
form of conjugate pairs, and for more precise bibliographic references, see our
papers: Solomon Marcus: Imprecision, between variety and uniformity: the con-
jugate pairs. In J.J. Jadacki, W. Strawinski, eds. In the World of Signs, Poznan
Studies in the Philosophy of the Sciences and the Humanities 62, 1998, 59–72,
Rodopi, U.S.A. Solomon Marcus, Controverses in science and in engineering
(in Romanian) Technical Publ. House, Bucharest, 1990.

183

An approximate algorithm for NP-complete
optimization problems exploiting P-systems

Taishin Y. Nishida

Faculty of Engineering
Toyama Prefectural University

Kosugi-machi, 939-0398 Toyama, Japan

E-mail: nishida@pu-toyama.ac.jp

Abstract

A new approximate algorithm for optimization problems, called mem-
brane algorithm, are proposed, which is an application of G. Păun’s mem-
brane computing or P-system. Membrane algorithm consists of several
membrane separated regions and a subalgorithm and a few tentative so-
lutions of the optimization problem to be solved in every region. Subal-
gorithms improve tentative solutions problem simultaneously. Then the
best and worst solutions in a region are sent to adjacent inner and outer
regions, respectively. By repeating this process, a good solution will ap-
pear in the innermost region. The algorithm terminates if a terminate
condition is satisfied. A simple terminate condition is the number of it-
erations, while a little sophisticated condition becomes true if the good
solution is not changed during a predetermined period. Computer exper-
iments show that the algorithm solves the traveling salesman problem as
good as simulated annealing algorithm.

Key words: approximate algorithm, traveling salesman problem, P-
system

1 Introduction

Studies on approximate algorithms for NP-complete problems are a very impor-
tant issue in computer science because ([1, 2, 6]):

• There are thousands of NP-complete problems.

• Almost all NP-complete problems correspond to practical problems.

• There are very few (I think no) expectations for P = NP, or strictly solving
NP-complete problems in polynomial time.

We suggest a new approximate algorithm for solving NP complete opti-
mization problems. The algorithm uses P-system paradigm [4]. Then it is

called membrane algorithm. Membrane algorithm borrows nested membrane
structures, rules in membrane separated regions, and transporting mechanisms
through membranes from P-systems. Membrane algorithm remakes these com-
ponents to solve NP-complete optimization problems approximately.

In the next section, the outline of membrane algorithm is explained. De-
tails membrane algorithm are defined in order to solve the traveling salesman
problem approximately in Section 3. The section also describes results of com-
puter experiments under the definitions. An advanced membrane algorithm is
mentioned in Section 4.

2 The outline of membrane algorithm

Outermost region

innermost region

Figure 1: Membrane structure of the suggested algorithm.

Here we explain the new algorithm, called membrane algorithm. Membrane
algorithm consists of three different kinds of components:

1. A number of regions which are separated by nested membranes (Figure. 1).

2. For every region, a subalgorithm and a few tentative solutions of the op-
timization problem to be solved.

3. Solution transporting mechanisms between adjacent regions.

After initial settings, membrane algorithm works as follows:

1. For every region, the solutions are updated by the subalgorithm at the
region, simultaneously.

2. In every region, the best and worst solutions, with respect to the opti-
mization, are sent to the adjacent inner and outer regions, respectively.

3. Membrane algorithm repeats updating and transporting solutions until
a terminate condition is satisfied. A simple terminate condition is the
number of iterations, while a little sophisticated condition becomes true
if the good solution is not changed during a predetermined period.

186

The best solution in the innermost region is the output of the algorithm.
Membrane algorithm can have a number of subalgorithms which are any ap-

proximate algorithm for optimization problems, for example, genetic algorithm,
tabu search, simulated annealing, local search, and so forth. The algorithm is
expected to be able to escape from local minima by using a subalgorithm which
likes random search at outer regions. On the other hand, the algorithm can
improve good solutions in the inner regions by a subalgorithm which likes local
search. So, assigning appropriate subalgorithms for a given problem, perfor-
mance of the algorithm will be excellent.

Because the subalgorithms are separated by membranes and communica-
tions occur only between adjacent regions, membrane algorithm will be easily
implemented in parallel, distributed, or grid computing systems. This is the
second superior point of the algorithm.

3 First experiment of membrane algorithm solv-
ing traveling salesman problem

In this section we fix components of membrane algorithm to solve traveling
salesman problem (TSP for short). Then we implement and experiment the
algorithm on a computer.

3.1 Details of the algorithm

Let m be the number of membranes and let region 0 be the innermost and region
m − 1 be the outermost regions, respectively.

An instance of TSP with n nodes contains n pairs of real numbers (xi, yi)
(i = 0, 1, . . . , n − 1) which correspond to points in the two dimensional space.
The distance between two nodes vi = (xi, yi) and vj = (xj , yj) is the geomet-

rical distance d(vi, vj) =
√

(xi − xj)2 + (yi − yj)2. A solution is a list of nodes
(v0, v1, . . . , vn−1). The value of a solution v = (v0, v1, . . . , vn−1) denoted by
W (v) is given by

W (v) =

n−2∑

i=0

d(vi, vi+1) + d(vn−1, v0).

For two solutions u and v, v is better than u if W (v) < W (u). The solution
which has the minimum value in all possible solutions is said to be the strict
solution of the instance. A solution which has a value close to the strict solution
is called an approximate solution.

The algorithm has one tentative solution in region 0 and two solutions in
regions 1 to m − 1.

We use a tabu search as the subalgorithm in the innermost region, region 0.
Tabu search searches a neighbour of the tentative solution by exchanging two
nodes in the solution. In order to avoid appearing the same solution twice, tabu
search has a tabulist which consists of nodes already exchanged. Nodes in the

187

tabulist are not exchanged again. Tabu search resets the tentative solution and
the tabulist if one of the three conditions occurs:

1. The value of the neighbouring solution is less than that of the tentative
solution. The neighbouring solution becomes the tentative solution.

2. The value of the best solution in the region 1 is less than that of the
tentative solution. The best solution in the region 1 becomes the new
tentative solution.

3. Neighbour search exceeds a predetermined turns (in this case n
5). The

tentative solution remains. Only tabulist is reset.

In case 3, no improvement occurs. But tabu search tries to search other neigh-
bours, since there are many unsearched neighbours.

The tentative solutions in regions 1 to m−1 (there are two solutions in each
region) are improved by a subalgorithm summerized below:

1. If the two solutions have the same value, then a part of one solution (which
is selected probabilisticly) is reversed.

2. Recombinates the two solutions and makes two new solutions.

3. Modifies the two new solutions by point mutations. In the i-th region, a
mutation occurs under probability i

m
.

Obviously the subalgorithm described above resembles genetic algorithms. But
the subalgorithm always recombinates the two solutions in a region while genetic
algorithms randomly select solutions to be recombinated. If the two solutions
in a region are identical, recombination makes no new solutions. The step 1
avoids this case and introduces a new solution using reverse operation, which is
a kind of mutation.

The overall algorithm looks like:

1. Given an instance of TSP.

2. Randomly makes one tentative solution for region 0 and two tentative
solutions for every region 1 to m − 1.

3. Repeats 3.1 to 3.3 for d times (d is given as a parameter).

3.1 Modify tentative solutions simultaneously in every region using the
subalgorithm at the region.

3.2 For every region i (1 ≤ i ≤ m − 2), sends the best solution of the
solutions in the region (old solutions and modified solutions) to region
i − 1 and the worst solution to region i + 1. (In region 0, sends the
worst solution to region 1 and in region m−1, sends the best solution
to region m − 2.)

3.3 For every region 1 to m − 1 erases solutions but the best two.

188

4. Outputs the tentative solution in region 0 as the output of the algorithm.

In the above algorithm, steps 3.2 and 3.3 correspond to solution transporting
mechanisms between adjacent regions.

3.2 Computer experiments

Table 1: Results of membrane algorithm and a simulated annealing (SA) for the
benchmark problem eil51 (51 nodes). Membrane algorithm repeat step 3 40000
times. The number of trials of membrane algorithm is 10. Membrane 2, 10, 30,
and 50 stand for the algorithms with 2, 10, 30, and 50 regions, respectively.

Algorithm Membr. 2 Membr. 10 Membr. 30 Membr. 50 SA
Best 440 437 433 429 430

Average 544 450 442 435 438
Worst 786 457 450 444 445

Table 2: Results for benchmark problem kroA100 (100 nodes). 100000 iterations
and 10 trials.

Algorithm Membr. 2 Membr. 10 Membr. 30 Membr. 50 SA
Best 24524 22319 21770 21651 21369

Average 32973 23422 23200 22590 21763
Worst 49667 24862 23940 24531 22564

We have implemented the algorithm using Java programming language. By
using Java, modifications of the algorithm have been easily tested on a com-
puter. For example, we have implemented several recombination methods and
have found that edge exchange recombination (EXX) [3] exhibits the best per-
formance.

Tables 1 and 2 show results of the program for TSP benchmark problem
eil514 and kroA1005 from TSPLIB [5]. Results of simulated annealing from [7]
are also shown in the tables.

Figure 2 shows changes of the average value of solutions for kroA100 prob-
lem solved by membrane algorithm with 50 membranes. One can see that the
algorithm converges to considerable good solutions in a few steps, about 2000
to 3000 steps.

4The value of the optimum solution is 426.
5The value of the optimum solution is 21282.

189

Figure 2: Changes of the average value of solutions for kroA100 problem solved
by membrane algorithm with 50 membranes.

4 An improved membrane algorithm

In this section we discuss an improved membrane algorithm, called compound
membrane algorithm, which corresponds to a tissue P-system.

Compound membrane algorithm has two phases (Figure 3). In the first
phase, a number of membrane algorithms make good solutions from randomly
generated initial solutions. The good solutions, in turn, become the initial
solutions of the second phase. And a better solution is obtained.

We examine compound membrane algorithm with the following parameters:

• Number of membrane algorithms in the first phase is 100.

• All membrane algorithms have 50 membranes.

• Each membrane algorithm in the first phase terminates if the best solution
does not improved during 500 iterations6.

• The membrane algorithm in the second phase terminates if the best solu-
tion does not improved during 5000 iterations6.

6These numbers are selected according to the feature that membrane algorithm converges
fast (Figure 2).

190

Figure 3: Compound membrane algorithm.

Table 3: Results of compound membrane algorithm. Trials of compound and
simple membrane algorithms are 10.

eil51 kroA100
compound membrane SA compound membrane SA

50 50
best 429 429 430 21431 21651 21369
average 431 435 438 21616 22590 21763
worst 435 444 445 21816 24531 22564

Results of computer experiments of compound membrane algorithm are
shown in Table 3. We can see that compound membrane algorithm always
outputs almost strict solutions.

On a single processor, computation time of compound membrane algorithm,
of course, is much longer than that of simple membrane algorithm. But, be-
cause membrane algorithms in the first phase work completely independent,
compound membrane algorithm will easily be implemented on distributed com-
puting system and computation time will be twice as short as that of simple
membrane algorithm.

5 Conclusion

We have proposed and implemented a new algorithm, called membrane algo-
rithm, for solving NP-complete optimization problems. Computer experiments
have shown that membrane algorithm gets as good approximate solutions for

191

TSP as simulated annealing algorithm. Convergence of membrane algorithm
is fast. An improved membrane algorithm, compound membrane algorithm,
always gives almost strict solutions for TSP.

References

[1] C. A. Floudas and P. M. Pardalos (eds), Encyclopedia of Optimization
(Kluwer, Dordrecht, 2001).

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, (Freeman, 1979).

[3] K. Maekawa et. al., A solution of traveling salesman problem by genetic
algorithm (in Japanese), SICE, 31, 598–605, 1995.

[4] Gheorghe Păun, Computing with membrane, Journal of Computer and Sys-
tem Sciences, 61, 108–143, 2000.

[5] Gerhard Reinelt, TSPLIB, URL http://www.iwr.uni-heidelberg.de/
group/comopt/software/TSPLIB95/

[6] Arto Salomaa, Computation and Automata, (Cambridge University Press,
Cambridge, 1985).

[7] M. Yoneda, URL http://www.mikilab.doshisha.ac.jp/dia/research/
person/yoneda/research/2002 7 10/SA/07-sareslut.html

192

Fuzzy P systems and fuzzy rule-based

decisionmaking systems

Abstract

Adam ObtuÃlowicz

Institute of Mathematics
Polish Academy of Sciences

e-mail: adamo@impan.gov.pl

The application of Petri nets to model rule-based decisionmaking systems,
known since late 70s of XX century (cf. [1], [2], [4]), and the relationship of
P systems and Petri nets described in [3] give rise to the following conclusion
explained in the present lecture and containing the proposals of the future more
detailed investigations.

P systems, eventually their modifications or fuzzy counterparts can be used
for modelling rule-based decisionmaking by a hierarchically organized system
of many single (separate) rule-based decisionmaking systems modelled by Petri
nets7, respectively such that

— the single rule-based decisionmaking systems, belonging to the whole hier-
archically organized system are associated to (or placed in) hierarchically
organized ambients (or the regions of membranes which form a membrane
structure—a tree), respectively,

— the outputs of the single rule-based decisionmaking system associated to
an ambient (or placed in the region of a membrane) m may coincide only
with some places of the Petri net modelling the single rule-based decision-
making system associated to an ambient (or a membrane) immediately
neighbouring with m, i.e. the ambient immediately containing m or an
ambient immediately contained in m.

It seems that it is more natural and less elaborate to formulate the decision
rules of such hierarchically organized system in the manner of evolution rules
of P system and then to transform the obtained P system to an appropriate

7where the places and the transitions of Petri nets correspond to decision conditions and
decision rules, respectively.

hierarchically organized system of Petri nets, like in [3], in order to investigate,
for instance, reachability problem by using the known methods of Petri net
theory.

References

[1] Shyi-Ming Chen, Jyh-Sheng Ke, Jin-Fu Chang, Knowledge Representation
Using Petri Nets, IEEE Transactions on Knowledge and Data Engineering,
vol. 2, No. 3, September 1990, pp. 311–319.

[2] C. G. Looney, Fuzzy Petri Nets for Rule-Based Decisionmaking , IEEE
Transactions on Systems, Man, and Cybernetics, vol. 18, No. 1, February
1988, pp. 178–183.

[3] A. ObtuÃlowicz, Mathematical models of uncertainty with a regard to mem
brane systems, Natural Computing, 2, 2003, pp. 251–263.

[4] W. Pedrycz, H. Camargo, Fuzzy timed Petri nets, Fuzzy Sets and Systems,
140, 2003, pp. 301–330.

194

