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Actual topic of this talk

To present an application field for (computer) algebra in
computational biology, namely in the comparison of graphs.

The mathematics are so basic that most of this work can be
proposed as homework in undergraduate courses (we have
done it).
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Graphs in biology

Graphs are ubiquous as models in computational biology:

• Models of 3D structures of biopolymers (RNA, proteins)

• Metabolic and other biochemical or genetic networks

• Phylogenetic trees and networks

The (efficient, reliable, meaningful) comparison of these graph
models is an important problem in computational biology.

Algebraic models and techniques can be used to define metrics
and similarities.



How it all started

Comparison of RNA 3D structures using algebraic models
(Reidys-Stadler, Comp. & Chem. 20 (1996))

Yeast tRNAPhe 3D-structure and an abstraction of it
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RNA contact structures

An RNA contact structure of length n can be described as an
undirected graph Γ = ({1, . . . , n}, B t Q) (B : backbone, Q:
contacts) such that:

(i) B =
{
{j , j + 1} | j = 1, . . . , n − 1

}
(ii) {j , j + 1} /∈ Q for every j

(iii) Unique bonds: If {i , j}, {i , k} ∈ Q, then j = k .

Cn: the set of all contact structures of length n

Un: the set of all RNA contact structures of length n.



Reidys-Stadler’s work I: Permutation models

An RNA contact structure Γ ∈ Un is injectively represented by
the permutation

π(Γ) =
∏

{i ,j}∈Q

(i , j) ∈ Sn

Proposition
The mapping dinv : Un × Un → R defined by

dinv(Γ1, Γ2) = least number of transpositions necessary
to represent π(Γ2)π(Γ1)

is a metric on Un.

Used extensively in Vienna and Santa Fe
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Reidys-Stadler’s work II: Subgroup models

An RNA contact structure Γ ∈ Un is injectively represented by
the permutation group

G (Γ) = 〈(i , j) | {i , j} ∈ Q〉 ⊆ Sn

Proposition
The mapping dsgr : Un × Un → R defined by

dsgr(Γ1, Γ2) = log2

∣∣∣∣ G (Γ1) · G (Γ2)

G (Γ1) ∩ G (Γ2)

∣∣∣∣
is a metric on Un.

Not too interesting . . . as dsgr(Γ1, Γ2) = |Q1∆Q2|.
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A monomial distance

To get rid of the unique bonds condition, and to obtain
non-trivial metrics, we move from subgroups to monomial
ideals (Llabrés-Rosselló, Comp. Biol. Chem. 28 (2004))

A contact structure Γ ∈ Cn is injectively represented by the
edge ideal

IΓ = 〈xixj | {i , j} ∈ Q〉 ⊆ F2[x1, . . . , xn]

Some notations:

πm: projection modulo all weight m monomials

M(I )k : monomials of weight 6 k in I

H(I ): Hilbert polynomial of I
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A monomial distance

Proposition
For every m > 3, the mapping Dm : Cn × Cn → R defined by

Dm(Γ1, Γ2) = log2

∣∣∣∣πm(IΓ1) + πm(IΓ2)

πm(IΓ1) ∩ πm(IΓ2)

∣∣∣∣ (D3 = dsgr)

= |M(IΓ1)m−1∆M(IΓ1)m−1|
= HIΓ1

(m − 1) + HIΓ2
(m − 1)− 2HIΓ1

+IΓ2
(m − 1).

is a metric on Cn.

See the survey (Rosselló, in Recent results in natural
computing (Ed. Fénix, 2005)) for details, other metrics, open
problems, etc.
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Phylogenetic trees

A phylogenetic tree is a representation of the evolutive
dependence and branching of the organisms represented by the
leaves.
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leaves and without outdegree 1 nodes.



Phylogenetic trees

A phylogenetic tree is a rooted tree with injectively labeled
leaves and without outdegree 1 nodes.

A phylogenetic tree is a directed finite graph T = (V , E )
containing a distinguished node r ∈ V , the root, such that for
every other node v ∈ V there exists one, and only one, path
from the root r to v .



Phylogenetic trees

A phylogenetic tree is a rooted tree with injectively labeled
leaves and without outdegree 1 nodes.

The children of a node v are those nodes w ∈ V such that
(v , w) ∈ E .

The descendants of a node v are those nodes w ∈ V that can
be reached from v through a (directed) path



Phylogenetic trees

A phylogenetic tree is a rooted tree with injectively labeled
leaves and without outdegree 1 nodes.

The nodes without children are the leaves of the tree. The set
of leaves of T is denoted by L(T ).

The nodes that are not leaves are called internal. We assume
that every internal node has at least 2 children.



Phylogenetic trees

A phylogenetic tree is a rooted tree with injectively labeled
leaves and without outdegree 1 nodes.

The height of a node v is the length of a longest directed path
from v to a leaf.

The depth of a node v is the length of the path from r to it.



Phylogenetic trees

The leaves of a phylogenetic tree are injectively labeled in a
fixed, but arbitrary, set. In practice, if the tree has n leaves, we
shall identify their labels with 1, . . . , n.

The label associated to a leaf v ∈ V will be denoted by `(v).

Tn: the set of all phylogenetic trees with n leaves labeled
1, . . . , n



Phylogenetic trees: Transposition distance

We assume the leaves ordered 1 < · · · < n.
The bottom-up ordering of T = (V , E ) ∈ Tn is the injective
mapping

`T : V → {1, . . . , |V |}

defined by:

(a) If v ∈ L(T ), then `T (v) is its label

(b) If height(u) < height(v), then `T (u) < `T (v);

(c) If 0 < height(u) = height(v) and

min{`T (x) | x ∈ children(u)} < min{`T (x) | x ∈ children(v)},

then `T (u) < `T (v).



The previous phylogenetic tree



The previous phylogenetic tree and its bottom-up ordering



Phylogenetic trees: Transposition distance

The matching representation of a phylogenetic tree
T = (V , E ) ∈ Tn is the partition of {1, . . . , |V | − 1}

M(T ) = {`T (children(u)) | u ∈ V − L(T )}.



The previous phylogenetic tree and its matching representation

M(T ) =
{
{4, 6, 10},{9, 7, 5, 1},{11, 2},{13, 8},{3, 12, 14}

}



Phylogenetic trees: Transposition distance

The matching representation of a phylogenetic tree
T = (V , E ) ∈ Tn is the partition of {1, . . . , |V | − 1}

M(T ) = {`T (children(u)) | u ∈ V − L(T )}.

The cycle associated to an ordered set S = {i1, . . . , ik}, with
i1 < · · · < ik and k > 2, is κ(S) := (i1, i2, . . . , ik).

The matching permutation π(T ) associated to a phylogenetic
tree T = (V , E ) ∈ Tn is the permutation of {1, . . . , 2n − 2}
defined by the product of the cycles associated to the
members of its matching representation:

π(T ) =
∏

u∈V−L(T )

κ(`T (children(u))) ∈ S2n−2.



The previous phylogenetic tree and its matching permutation

π(T ) = (4, 6, 10)(1, 5, 7, 9)(2, 11)(8, 13)(3, 12, 14)



Phylogenetic trees: Transposition distance

Proposition
The mapping TD : Tn × Tn → R defined by

TD(T1, T2) = least number of transpositions necessary
to represent π(T2)

−1π(T1)

is a metric on Tn.

It takes values 0, 2, 4, 6, . . . , 2n− 4, and it can be computed in
linear time

More details in Rosselló, Valiente, q-bio/0604024

Main drawback: it depends too much on the label ordering



Phylogenetic trees: Monomial distances

To get rid of the label ordering, we use suitable monomial
ideals. For instance:

The monomial associated to S = {i1, . . . , ik} ⊆ {1, . . . , n} is
µ(S) := xi1 · · · xik .

The monomial associated to an internal node v of T ∈ Tn is
µ(v) := x

depth(v)
0 µ(L(v)), where L(v) stands for the set of

labels of the leaves that are descendants of v .

The monomial ideal IT associated to T = (V , E ) ∈ Tn is

IT = 〈µ(v) | v ∈ V − (L(T ) ∪ {r})〉 ⊆ F2[x0, x1, . . . , xn]



The previous phylogenetic tree and its monomial ideal

IT = 〈x0x4x6x10, x
3
0x1x5x7x9, x

2
0x1x2x5x7x9, x0x1x2x5x7x8x9〉

(without x0, we loose information)



Proposition
The mapping MDn : Tn × Tn → N defined by

MDn(T1, T2) = |M(IT1)n∆M(IT2)n|

is a metric on Tn.

Too large numbers, quite expensive to compute, but it refines
other edit distances.

One could “count” instead monomials of weight n square-free
in x1, . . . , xn

For more details and other monomial distances, browse the
arXiv in a near future



Open problems

• Use of other algebraic objects

• Efficient computation of monomial distances

• Comparison of contact structures of different lengths

• Comparison of phylogenetic trees with nested taxa
(labeled internal nodes)

• Comparison of phylogenetic networks (completely
unexplored)

• . . .


