
	Course Title:
	Academic Writing

	Course Code:
	AW

	Course Status:
	Generic

	Recommended Prior Study:

Undergraduate degree or Masters

	Learning Outcomes:

After completing the module the student should be able to:

1. Communicate findings, in both written and oral form, in a professional manner

2. Assess previous research reports/research papers completed in an area

3. Critically appraise research data and assimilate, integrate and discuss in a logical way

4. Produce an appropriate project description and specification
5. Present and defend their findings clearly

	Aims & Objectives:
To improve technical communication skills.

To develop research and technical communication skills and awareness of the legal and ethical framework surrounding the activities of a professional engineer, including: personnel, health, safety, and risk (including environmental risk) issues.

To enable students to demonstrate theoretical and practical research skills.

To develop in students the ability to specify and design a major research project.

To provide students with the opportunity to conduct and defend orally an independent research project.

	Syllabus Contents (Main topics):
Introduction “Why do research”.

On-line literature search methods.

Interpreting your observations.

Presenting your findings.

Speaking and writing for the technical professions.

Analysing observations and choosing appropriate means of presenting research findings.

Introduction to search methods, technical writing and speaking.

	Assessment Procedure:
Coursework: 40% Literature search & Research critique

Coursework: 20% Presentation of proposed project.

Coursework: 40% Detailed Doctoral Project proposal.

	Indicative Sources:

1. Alison, B. (1997) 'The Students Guide to Writing Dissertations and Theses' Kogan Page

2. Booth, V. (1993) 'Communicating in science: writing a scientific paper and speaking at scientific meetings' Cambridge University Press

3. Galliers, R. (1994) 'Information Systems Research: Issues, Methods and Practical Guidelines' McGraw-Hill Education - Europe 187247439X

4. Martin, M.W and Schinzinger, R (1997) 'Ethics in Engineering' 3rd McGraw-Hill 0-07-114195-2

5. Sharp, J.A. and Howard, K (1996) 'The management of a student research project' 2nd Gower

6. Swetnam D (2000) 'Writing Your Dissertation: The Best Selling Guide to Planning, Preparing and Presenting First Class Work' How to Books

7. Turk, C and Kirkman, J (1995) 'Effective writing' 2nd E & FN

8. SponVan Wegenen, K.R. (1991) 'Writing a Thesis :Substance and Style' Prentice-Hall 0139710868

	Course Title:
	Methodology of the Scientific Research

	Course Code:
	MSR

	Course Status:
	Generic

	Recommended Prior Study:

Undergraduate degree or Masters

	Learning Outcomes:

After completing the module the student should be able to:

1. Demonstrate and develop fundamental research skills such as literature search, hypothesis/question formation, presentation of findings, and critical assessment of conclusions and implications

2. To provide a theoretical background for conducting postgraduate work
3. To provide a programme of training in the research process

	Aims & Objectives:
To enable students to demonstrate theoretical and practical research skills.

To develop in students the ability to specify and design a major research project.

To develop skills in planning, interpretation, analysis and data processing.

	Syllabus Contents (Main topics):
Introduction to literature search methods including on-line methods.

Interpreting and analysing your observations.

Analysing observations and choosing appropriate means of presenting research findings.

Science and scientific methodology: Epistemology, classification of research: theory development and testing; the deductive-inductive research process; and the role of independent and dependent variables.

Data collection techniques: Observational Techniques; Survey Techniques; Experimental Techniques.

Qualitative and quantitative data collection and analysis.

Project planning, Time management and Gantt charts.

Critical evaluation of published work

Introduction to data analysis software (e.g. SPSS)

	Assessment Procedure:

Continuous assessment:

25% Description of literature search rationale

25% Critical review of literature

25% Analysis and reflection on illustrative results

25% Suggested time management plan

	Indicative Sources:
1. Galliers, R. (1994) 'Information Systems Research :Issues, Methods and Practical Guidelines' McGraw-Hill Education - Europe 187247439X

2. Gash, S. 2000. Effective literature searching for students. Gower. ISBN 0566081253
3. Sharp, J. A. And Howard, K. 1996. The management of a student research project (2nd edition). Gower. ISBN 056607706x
4. Williamson, K. (2002) 'Research Methods for Students, Academics and Professionals :Information Management and Systems' 2nd Centre for Information Studies, Charles Sturt University, NSW 1876938420

	Course Title:
	Legal Grounds and Structure of Doctoral Thesis

	Course Code:
	LGSDT

	Course Status:
	Generic

	Recommended Prior Study:

Undergraduate degree or Masters

	Learning Outcomes:

After completing the module the student should be able to:

1. Formulate research proposals, and plan and conduct the five stages of empirical investigation: design, sampling, data collection, data processing, and reporting

2. Demonstrate and develop fundamental research skills such as literature search, hypothesis/question formation, presentation of findings, and critical assessment of conclusions and implications

3. produce an appropriate project description and specification
4. Undertake a major research project and demonstrate competence in its execution

	Aims & Objectives:
To provide a theoretical background for conducting postgraduate work

Formulate a research question of interest; apply relevant methods of investigation; and analyze, interpret and critically assess the findings.

Gain knowledge and experience of the skills entailed in conducting research, including those concerned with literature searches, research design, fieldwork, statistical analysis, and report-writing.

To develop in students the ability to specify and design a major research project.

To provide students with the opportunity to conduct and defend orally an independent research project.

	Syllabus Contents (Main topics):
Introduction “Why do research”

Interpreting your observations.

Project analysis and design

Ethics in engineering, computing and technology

Project planning

Time management and use of Gantt charts

Data collection techniques: Observational Techniques; Survey Techniques; Experimental Techniques.

Structured presentation of research material

Processes and procedures for dissertation submission and defense

	Assessment Procedure:
Coursework: 40% Outline of thesis structure and content

Coursework: 20% Presentation of proposed project

Coursework: 40% Detailed Doctoral Project proposal

	Indicative Sources:
1. Alison, B. (1997) 'The Students Guide to Writing Dissertations and Theses' Kogan Page

2. Galliers, R. (1994) 'Information Systems Research :Issues, Methods and Practical Guidelines' McGraw-Hill Education - Europe 187247439X

3. Martin, M.W and Schinzinger, R (1997) 'Ethics in Engineering' 3rd McGraw-Hill 0-07-114195-2

4. Sharp, J.A. and Howard, K (1996) 'The management of a student research project' 2nd Gower

5. Swetnam D (2000) 'Writing Your Dissertation: The Best Selling Guide to Planning, Preparing and Presenting First Class Work' How to Books

6. Turk, C and Kirkman, J (1995) 'Effective writing' 2nd E & FN Spon

7. Williamson, K. (2002) 'Research Methods for Students, Academics and Professionals :Information Management and Systems' 2nd Centre for Information Studies, Charles Sturt University, NSW 1876938420

8. Van Wegenen, K.R. (1991) 'Writing a Thesis :Substance and Style' Prentice-Hall 0139710868

	Course Title:
	Intellectual Property Protection

	Course Code:
	IPP

	Course Status:
	Generic

	Recommended Prior Study:

Undergraduate degree or Masters

	Learning Outcomes:

After completing the module the student should be able to:

1. Assess the essential contemporary legal, moral and ethical issues relating to intellectual property, as they concern the use of, and exploitation of, technology in the work environment.

2. Examine the potential conflicts between EU IP rights, EU competition law, and National IP rights.

3. Scrutinise the European Patents Convention and the workings of the European Patents Office.
4. Evaluate the implications of Electronic Data Interchange and Cross-Border Data Flows in the EU.

	Aims & Objectives:
Consideration and examination of intellectual property rights as they impinge on the exploitation of technology; rights, duties and responsibilities of inventors; licensees; employers and employees.

	Syllabus Contents (Main topics):
Introduction and rational of Intellectual Property Rights

Nature of Intellectual Property

Law of Patent

Industrial Designs

Trade Marks and Trade Names

Law of Confidential Information

Copyright and Design Copyright

Proposed EC Trade Mark

European Patents Convention

European Patents Office

EDI and Cross Border Data Flows

	Assessment Procedure:

100% coursework: A number of reports on ‘Case study’ examples

	Indicative Sources:
1. Phillips and Firth 'Introduction to Intellectual Property'

2. Bainbridge, D. (2002) 'Intellectual Property' 5th Longman

3. Dworki & Taylor (1988) 'Copyright, Design and Patents act' Blackstones Statutes

4. Cornish, W. & Llewelyn, D. (2003) 'Intellectual Property :Patents, Copyright, Trade Marks and Allied Rights' 5th Thomson 0-421-78120-3

5. Holyoak, J and Torremans, P (2001) '''Intellectual Property Law''' 3rd Butterworths

6. Bentley L. and Sherman B. (2004) 'Intellectual Property Law' 2nd OUP

	Course Title:
	Post Doctoral Seminar

	Course Code:
	PDS

	Course Status:
	Generic

	Recommended Prior Study:

Undergraduate degree or Masters

	Learning Outcomes:

After completing the module the student should be able to:

1. Demonstrate and develop fundamental research skills such as literature search, hypothesis/question formation, presentation of findings, and critical assessment of conclusions and implications

2. Present a seminar paper and respond appropriately to comments received

	Aims & Objectives:
Practice the skills involved in seminar presentation, including those required in effective summarizing of ideas and information, and oral communication.

To develop research and technical communication skills and awareness of the legal and ethical framework surrounding the activities of a professional engineer, including: personnel, health, safety, and risk (including environmental risk) issues.

To enable students to demonstrate theoretical and practical research skills.

To develop in students the ability to specify and design a major research project.

	Syllabus Contents (Main topics):
Introduction to search methods, technical writing and speaking

On-line literature search methods.

Interpreting your observations.

Presenting your findings.
Speaking and writing for the technical professions.

Analysing observations and choosing appropriate means of presenting research findings.

Science and scientific methodology: Epistemology, classification of research: theory development and testing; the deductive-inductive research process; and the role of independent and dependent variables.

Data collection techniques: Observational Techniques; Survey Techniques; Experimental Techniques

	Assessment Procedure:

Presentation of a research seminar paper:

25% for the aural presentation

25% for the presentation (visual style and impact)

25% for the presentation (technical content)

25% for responses to questions

	Indicative Sources:
1. Booth, V. (1993) 'Communicating in science: writing a scientific paper and speaking at scientific meetings' Cambridge University Press

2. Galliers, R. (1994) 'Information Systems Research :Issues, Methods and Practical Guidelines' McGraw-Hill Education - Europe 187247439X

3. Turk, C and Kirkman, J (1995) 'Effective writing' 2nd E & FN Spon

4. Williamson, K. (2002) 'Research Methods for Students, Academics and Professionals :Information Management and Systems' 2nd Centre for Information Studies, Charles Sturt University, NSW 1876938420

	Course Title:
	Advanced Algorithms

	Course Code:
	AA

	Course Status:
	Main

	Recommended prior study:

Introduction to algorithms

Linear algebra

	Learning outcomes:

This course introduces advanced algorithmic paradigms and applications. After completing the course, the student should know the main principles of design and analysis of algorithms. The student should know how to:

1. Design and implement algorithms in the real world;

2. Map problems to algorithmic problems;

3. Understand the general notion of complexity classes, P and NP, completeness and hardness, and the relationships between classes by reduction.

	Aims & Objectives:

The course covers a range of advanced algorithms in areas such as graph algorithms, string matching and network flows, the notion of complexity classes for algorithmic tasks, completeness and hardness. The main objective of this course is studying techniques for developing fast algorithms, particularly for optimization problems. For these problems there are typically a finite number of candidate solutions and the goal is to find an optimal solution (with min cost or max gain). To verify whether a candidate solution is optimal often requires non-trivial work. The other emphasis is on the correctness proofs.

	Syllabus Contents (Main topics):

Graph Algorithms
Backtracking
Divide and Conquer
Network Flows
Dynamic Programming
Greedy Algorithms
String Matching Algorithms
Linear Programming. Duality

LP Relaxation

NP-completeness

Approximation Algorithms

Branch and Bounds Methodology

	Assessment Procedure:

20% of the final mark is from homework exercises, 20% from the project, and 60% from the final exam.

	Indicative Sources:

Literature is not mandatory, but the main issues of this course can be found from selected chapters of these

Books:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, 2001

2. Jon Kleinberg and Eva Tardos, Algorithm Design, 2005

3. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and Computational Biology, Cambridge University Press, 1997

	Course Title:
	Advanced Computer Architectures

	Course Code:
	ACA

	Course Status:
	Main

	Recommended prior study:

Computer science fundamentals

Computer structure and organization

Computer architecture

	Learning outcomes:

Students will understand the fundamental concepts and designs of advanced computer architectures including advanced instruction level parallelism, thread-level parallelism, and application specific processors. Students learn and develop their skills from simulator design and quantitative analysis of experimental results.

	Aims & Objectives:

Students get acquainted with the architectural concepts of contemporary advanced computer systems. The course covers the advanced concepts of microprocessor architecture and microarchitecture, exploiting instruction-level and thread-level parallelism, multiple-issue processors. Parallel computer architectures are treated in the aspects of the abstract and physical machine models. The structure and organization of system area networks are studied. The spectrum of parallel architectures is studied including vector processors, symmetric shared-memory architectures, distributed shared-memory architectures, and multicomputers (massively parallel processors and clusters of workstations). Methods and approaches for performance estimation are presented for both uniprocessor and multiprocessor systems.

	Syllabus Contents (Main topics):

Pipelined and superpipelined Processors

Superscalar Processor Design

ILP Exploitation

Advanced Speculation Techniques

Thread-Level Parallelism

Multicore processors

Data flow architectures

Advanced parallel computer architectures

Abstract and physical machine models

Parallel vector processors

Symmetric shared-memory architectures

UMA & NUMA cache coherent multiprocessor architecture

Massively parallel processors

Computer clusters architectural styles

Distributed shared memory architectures

GRID architectures

	Assessment Procedure:

60% Exam, 40% Assignments

	Indicative Sources:

Books:

1. John Hennesy, David Patterson, Computer Architecture, A Quantitative Approach, Morgan Kaufmann Publishers, 2003.

2. Theo Ungerer, Parallelrechner und parallele Programmierung, Spektrum Akademischer, Verlag Heidelberg Berlin, 1997.

3. Brinkschulte Ungerer, Mikrocontroller und Mikroprozessoren, Springer, 2002.

4. Kai Hwang, Zhiwei Xu, Scalable Parallel Computing, McGraw-Hill, 1998.

5. Michael Flynn, Computer Architecture (Pipelined and Parallel Processor Design), Jones and Bartlett Publishers, 1995.

6. Harry Jordan, Gita Alaghband, Fundamentals of Parallel Processing, Prentice Hall, 2003.

	Course Title:
	Theory of Programming Languages

	Course Code:
	TPL

	Course Status:
	Main

	Recommended prior study:

None

	Learning outcomes:

The course gives fundamental knowledge on theory of formal languages and practical fundamentals of modern programming languages.

	Aims & Objectives:

The course aims are to introduce basic concept of formal languages, including regular expressions, context free grammars and recognizers. Typical components of PL include data, operands and operators, expressions, statements, routines. Structured programming and evolution to OOP are discussed. Imperative, logic and functional programming styles are presented.

	Syllabus Contents (Main topics):

Formal Languages

Regular Languages

Context-Free Grammars
Context-Free Grammars

Recognizers (Acceptors)

Lexics, Syntax and Semantics

Software life cycle

Components of Programming Languages
Fundamentals of Subprograms

Iteration or Recursion in Imperative Programming

Exception Handling

Event Handling

Programming styles

Object oriented programming

Imperative Programming

Structured programming

Logic Programming.

Functional Programming.

	Assessment Procedure:

Exam

	Indicative Sources:

Books:

1. Sebesta R., Concepts of Programming Languages, IE Pearson Education, Addison Wesley Publ. Com., 7th Edition, 2006.

2. Friedman F., E.Koffman, Problem Solving, Abstraction and Design Using C++, IE Pearson Education, Addison Wesley Publ. Com., 2004.

3. Lafore R., Object-Oriented Programming in Turbo C++, 4th edition, SAMS Publ., 2002.

4. Aho A., R.Sethi, J.Ullman, Compilers Principles, Techniques and Tools, Prentice Hall Inc., International Edition, 2003.

	Course Title:
	Software Design Methodologies

	Course Code:
	SDM

	Course Status:
	Main

	Recommended prior study:

Undergraduate programming languages class

Mathematical maturity, familiarity with mathematical logic, predicate calculus

Exposure to elementary software engineering concepts and practices

Proficient with programming in at least one language (C/C++/Java) is required. Practical and Professional Issues in Computer Science, Design of Algorithms, Foundations of Computer Science

Students will be assumed to have been exposed to basic Software design concepts in previous courses

	Learning outcomes:

Having completed the course, the students should:

1. Understand the basic issues faced by a team developing a large-scale software system.

2. Understand how software development projects are planned and scheduled, and why such planning is difficult for large systems.

3. Be aware of high-level architectures typical of large-scale systems.

4. Be familiar with typical processes used for large-scale, long-term software development.

5. Be aware of common threats to large projects and how to address them.

6. Be able to select and apply an appropriate design pattern.

7. Be able to select and apply appropriate existing architectures for large-scale, long-lived systems.

8. Be able to explain how refactoring can be used to preserve good design as programs are modified.

9. Be able to explain why software reuse is difficult, and some approaches for increasing software reuse.

10. Be able to summarize and apply approaches for maintaining and replacing legacy code.

11. Be able to describe and be able to use tools for automating large-scale, long-term development, such as configuration, build, test, and project management tools

12. Understand the role of Software Design the Software Engineering process.

13. Implement the Software Design process.

14. Ability to transfer knowledge into Design

15. Overview of multiple design practices both OOD and Structured Design.

16. Develop UML Diagrams related to a medium scale software project.

17. And more

	Aims & Objectives:

1. This is a course in concepts and methods for the architectural design of software systems of sufficient size and complexity to require the effort of several people for many months. Fundamental design concepts and design notations are introduced. Several design methods are presented and compared, with examples of their use. Students will undertake a term project working in small groups addressing the design of a relatively complex software system.

2. This course studies the process for designing complex software applications, with a special focus on the use of formal design and verification methods. The study of formal methods includes contemporary methodologies and tools like "design by contract," the Unified Modeling Language (UML) and the Java Modeling Language (JML). In this course, students will evaluate the overall strengths and limitations of formal specification and verification in the software design process. A substantial software design project will be used as a case study for working with various concepts, tools, and techniques in a laboratory setting.

3. The aim of this course is to present a range of effective methods for the design and implementation of software, especially where that software must meet professional quality standards. This will include a brief introduction to current commercial methods, but the main motivation is to understand the reasons why such methods have developed, how they differ from the concerns of academic computer science, and what are the technical foundations of good software engineering

	Syllabus Contents (Main topics):

Concepts of Software Design

Software Design Methods
Functional Design Methods

Structured Design

Concurrent Design Methods

Object-based Methods

Object-Oriented Design

Software Architecture - concepts, representation techniques, development methods, and tools for architecture-centric software engineering.
Software architectures, architectural styles, architecture description languages, software connectors, and dynamism in architectures, architecture-based testing and analysis
Decentralized software architecture

Design patterns

Component reuse

Class interface definition

Module decomposition

Hierarchical classification

Extensible object-oriented application frameworks

Software Architecture Design. Subsystem Structuring Criteria.

Refactoring

Extreme programming

The Unified Software Development Process

Architectural Styles/Patterns

Domain Specific Software Design

Formal Architectural Design Descriptions (ADLs)

Evaluating Software architectures

Tools Support for Architectural Design

Component based software developments

	Assessment Procedure:

60% of the final mark is from an exam. 40% is from practical exercises, reports, and presentations. In place of some of the exercises, students undertake a literature survey of an area relevant to the course topics.

	Indicative Sources:

Books:

1. Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson, and Vlissides; Addison-Wesley, 1995
2. Elements of ML Programming, Ullman. Prentice Hall, 1994.

3. Mary Shaw and David Garlan. Software Architecture: Perspective on an Emerging Discipline, Prentice -Hall, 1996

4. Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architecture Methods and Case Studies. Addison Wesley, 2002

5. Len Base, Paul Clements, Rick Kazman. Software Architecture in Practice. Second Edition, Addison Wesley, 2003
6. Sommerville 2004, Software Engineering, Addison Wesley, ISBN 032121026X

	Course Title:
	Information Management Theory

	Course Code:
	IMT

	Course Status:
	Main

	Recommended prior study:

Database Management Systems

Human Computer Interaction

	Learning outcomes:

Familiarity with the theory and practice of storing, organizing, retrieving and analyzing information in a variety of settings in business, the public sector, and the academic world

	Aims & Objectives:

After completing the course, the student is expected to:

1. Understand how to organize information

2. Analyze user information needs

3. Be able to design or evaluate information systems that allow for efficient and effective user interaction

4. Be able to provide and assure the quality and value of information to decision makers

	Syllabus Contents (Main topics):

Information retrieval

Document Engineering

Economics of Information

Legal Issues in Information Management

Intellectual Property

Theoretical foundations of unstructured information management

Unstructured Information Management Architecture UIMA (IBM, 2005)

	Assessment Procedure:

60% of the final mark is from an exam, and 40% of the activity in lab experiments.

	Indicative Sources:

Books:

1. David A. Grossman and Ophir Frieder. Information Retrieval: Algorithms and Heuristics. Second Edition. Dordrecht, The Netherlands: Springer, 2004 (ISBN 1-4020-3004-5).

2. Frank & Bernanke, Principles of Economics, McGraw-Hill 2007

3. Dave Chaffey, Steve Wood. Business Information Management: Improving Performance Using Information Systems, 2004

4. P. Griffiths. Information Management. Pergamon Pr, 1987

5. Donna A Hussain, K. M. Hussain, Khateeb M. Hussain. Information Management: Organization, Management and Control of Computer Processing. Prentice Hall, 1993

	Course Title:
	Advanced AI Concepts

	Course Code:
	AAC

	Course Status:
	Main

	Recommended prior study:

Undergraduate introductory courses in

AI

Maths Statistics and Probability

	Learning outcomes:

This course covers topics in representation, reasoning, and decision-making under uncertainty; learning; solving problems with time-varying properties. Assignments applying AI techniques toward building intelligent machines that interact with dynamic environments

	Aims & Objectives:

Students completing this course should:

1. Understand how to represent and reason about making decisions under uncertainty with methods such as Bayesian Networks and Decision Networks.

2. Understand how to represent and solve problems with time-varying properties with methods such as Filtering and Markov Decision Processes.

3. Understand how to learn representations for poorly understood problems with methods such as Reinforcement Learning and Neural Networks.

4. Analyze the additional complexities of dealing with large real world problems, including both time and space efficiency issues.

5. Explore general algorithmic methods, like dynamic programming and stochastic sampling, that apply beyond AI problems.

6. Experiment with applying AI techniques toward building intelligent machines that interact with dynamic, uncertain worlds.

	Syllabus Contents (Main topics):

Intelligent Agents

Planning

Reasoning Under Uncertainty

Probabilistic Foundations

Bayes Rule

Inference

Markov Chains

Reasoning over Time

Hidden Markov Models

Kalman Filters

Speech Recognition

Markov Decision Processes

Partially Observed MDP's

Forms of Learning

Statistical Learning

Neural Networks

	Assessment Procedure:

60% Exam, 40% Assignments

	Indicative Sources:

Books:

1. Artificial Intelligence: A Modern Approach, 2nd edition, Stuart J. Russell and Peter Norvig, Prentice-Hall, 2003, ISBN: 0-13-790395-2

2. Constraint Processing by Rina Dechter. Morgan Kaufmann, 2003

3. T. Mitchell. (1997) Machine Learning. McGraw Hill

4. B.J. Kuipers. (1994) Qualitative Reasoning: modelling and simulation with incomplete knowledge. MIT Press

5. S. M. Weiss and C. A. Kulikowsky. (1991) Computer Systems That Learn. Morgan Kaufmann

	Course Title:
	Complexity Theory

	Course Code:
	CT

	Course Status:
	Specific - Area 1 Algorithms and Complexity

	Recommended prior study:

Data Structures

Introduction to algorithms

Computation Theory

	Learning outcomes:

The course is concerned with the study of the intrinsic complexity of computational tasks. After completing the course, the student should be familiar with complexity classes and their interrelationships, and the phenomenon of NP-completeness. The student should know how to:

1. Identify problems that are NP-complete

2. Analyse practical problems

3. Classify different problems according to their complexity

	Aims & Objectives:

To introduce students to the theory of computational complexity. To explain measures of the complexity of problems and of algorithms based on time and space used on abstract models. The course covers important complexity classes and the notion of completeness.

	Syllabus Contents (Main topics):

Complexity of algorithms and of problems
Time and space. Models of computation and measures of complexity.
Complexity classes P and NP
NP-completeness

NP-complete problems. Graph-theoretic problems. Set covering and packing.

Space complexity
Hierarchy

	Assessment Procedure:

40% of the final mark is from homework exercises, and 60% from the final exam.

	Indicative Sources:

Literature is not mandatory, but the main issues of this course can be found from selected chapters of these

Books:

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, 2001

2. Jon Kleinberg and Eva Tardos, Algorithm Design, 2005

3. DZ Du, KI Ko, Theory of Computational Complexity, John Wiley & Sons, New York, 2000.

4. Ch.H. Papadimitriou. Computational complexity. Addison-Wesley. 1994.

5. M. Sipser. Introduction to the theory of computation. PWS. 1997

	Course Title:
	Scientific Computing (Numerical Methods)

	Course Code:
	SC

	Course Status:
	Specific - Area 1 Algorithms and Complexity

	Recommended prior study:

Linear algebra

Analysis

Calculus

Differential Equations

	Learning outcomes:

After completing the course, the student should know the main principles of Scientific computing, i.e. the principles of design and analysis of algorithms for solving Mathematical problems in science and engineering numerically. The student should know how to:

1. Use numerical methods for solving a problem, locate and use good mathematical software;

2. Get the accuracy you need from the computer;

3. Assess the reliability of the numerical results;

4. Determine the effect of round off error or loss of significance.

The course is devoted to the main numerical methods for solving the major problems in this area - linear algebra, eigenvalues, ordinary and partial differential equations, fast Fourier transform, optimization, and random number generators. Algorithms are developed for the treatment of typical problems in applications, with special emphasis on the types of data encountered in practice.

	Aims & Objectives:

To introduce students to the use of computers in scientific, mathematical and engineering applications. To explore varieties of computer tools including spreadsheets, mathematical software (e.g. MATLAB), statistical software, numerical methods and programming languages and how they can be used in the generation of solutions to scientific problems. Course covers theoretical development as well as implementation, efficiency, and accuracy issues in using algorithms and interpreting the results.

	Syllabus Contents (Main topics):

Computer Representation of Numbers
Curve Fitting and Graphing Results
Numerical Linear Algebra. Cholesky, LU, QR factorization
Eigenvalue Problems

Fourier Transformations

Locating Roots of Equations

Methods for Ordinary Differential Equations

Methods for Partial Differential Equations
Finite Element Method
Optimization Problems. Existence and Uniqueness. Sensitivity and Conditioning

Steepest Descent, Conjugate Gradient, Newton’s methods

Nondifferentiable optimization. Subgradient, Cutting-planes, Bundle methods

Random Numbers and Simulations

	Assessment Procedure:

20% of the final mark is from homework, narratives and programs, 20% from the project, and 60% from the final exam.

	Indicative Sources:

Literature is not mandatory, but the main issues of this course can be found from selected chapters of these

Books:

1. William H. Press, William T. Vetterling, Saul A. Teukolsky, and Brian P. Flannery. Numerical Recipes in C++: the art of scientific computing. 2002.

2. Michael T. Heath. Scientific Computing: An Introductory Survey, McGraw-Hill, New York, 2002

3. Jean – Baptiste Hiriart – Urruty and Claude Lemaréchal, Convex analysis and Minimization Algorithms I and II, Springer-Verlag Berlin Heidelberg 1993.

4. Ward Cheney and David Kincaid. Numerical Mathematics and Computing. 2004

	Course Title:
	Modelling and Simulation of Natural Systems

	Course Code:
	MSNS

	Course Status:
	Specific - Area 1 Algorithms and Complexity

	Recommended prior study:

Knowledge of object-oriented programming (basics of SIMULA) and of statistical methods

	Learning outcomes:

Ability of implementing mathematical and computer models of living systems

	Aims & Objectives:

Instructions to prepare the absolvents for modelling (parts of) living organisms and communities of organisms. The absovents should know basic principles of continuous and discrete event simulation, statistical tests and optimizing techniques.

	Syllabus Contents (Main topics):

Random values and basic tests (F-test, T-test, x2 test).

Compartmental models.

Simulation of cell systems.

Anticipatory systems and their position in the nature.

Object-oriented programming application in simulation environmental systems.

Graphical and animation complements of simulation.

	Assessment Procedure:

The student should elaborate and debug a computer model

	Indicative Sources:

Books:

1. “Modelling and Simulation” (in Czech) by I. Krivy and E. Kindler;

2. Kindler: “Simulation Programming Languages” (in Czech). Prague: SNTL, 1980;

3. SIMULA, A Language For Programming and Description Of Discrete Event Systems by O-L. Dahl,, J. Myhrhaug, & K. Nygaard or any other book on programming in SIMULA;

4. Papers in International Journal on Ecological Modelling and Systems Ecology

	Course Title:
	Parallel Algorithms and Parallel Programming

	Course Code:
	PAPP

	Course Status:
	Specific - Area 1 Algorithms and Complexity

	Recommended prior study:

Design and Analysis of Algorithms

Parallel Computer Architectures

	Learning outcomes:

High performance computing, GRID computing

	Aims & Objectives:

After completing the course, the student is expected to:

1. Know the concepts, principles, models and paradigms of parallel computing and the design of parallel software;
2. Be able to make comparative analysis and evaluate the trade offs of alternative solutions;
3. Verify the applied concept, principle, model, paradigm;
4. Be able to make an efficient implementation, parallelism profiling, and parallel program benchmarking.

	Syllabus Contents (Main topics):

Taxonomy of parallel processing. Parallel techniques and paradigms;

Abstract models of parallel machines;

Strategies and paradigms for parallel algorithm design;

Correlations of algorithmic to architectural spaces;

Design methodologies for parallel algorithms for various parallel computer platforms;

Designing parallel algorithms for various application areas: linear algebra, matrix multiplication, sorting, PDE, graphs, combinatorial search, document classification;

Design methodologies for parallel genetic algorithms for various parallel computer platforms;

Parallel programming with MPI

Parallel programming with OpenMP

Hybrid parallel programming MPI+OpenMP

Multithreaded programming

Parallel program benchmarking

Parallelism profiling

	Assessment Procedure:

60% of the final mark is from an exam, and 40% of the activity in lab experiments.

	Indicative Sources:

Books:

1. Grama A., Gupta A., Karypis G., Kumar V. Introduction to Parallel Computing, PEARSON, Addison Wesley, Second Edition, 2003.

2. Barry Wilkinson, Michael Allen Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers 2nd E”, Pearson Prentice Hall © 2005
3. Haupt R., S. Haupt Practical Genetic Algorithms, Wiley Interscience, A John Wiley & Sons, Inc., 2004

4. M. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw Hill Higher Education, International Edition, 2003

5. Hwang K., Zhiwei X., Scalable Parallel Computing: Technology, Architecture, Programming, WCB/McGraw-Hill, 1998.

6. Hennessy, J. L., Patterson, D. A., Computer Architecture, A Quantitative Approach, Third Edition, Morgan Kaufmann Publishers, 2003

URLs (Web sites):

MPI Forum www.mpi-forum.org
MPI: The Complete Reference www.netlib.org
The MPI standard & download www.mcs.anl.gov/mpi/
The OpenMP standard & download www.openmp.org
IEEE Task Force on Cluster Computing www.clustercomp.org
IEEE Technical Committee on Scalable Computing www.ieeetfcc.org
GA tutorial Home Page http://www.estec.esa.nl/outreach/gatutor/Default.htm

	Course Title:
	Concepts and Paradigms of Distributed Computing

	Course Code:
	CPDC

	Course Status:
	Specific - Area 1 Algorithms and Complexity

	Recommended prior study:

Computer Architectures

Programming Languages

	Learning outcomes:

Knowledge and hands-on experience in the use of industry standard and Internet-based distributed computing technologies in the development of networked enterprise systems and their applications

	Aims & Objectives:

After completing the course, students are expected to:

1. Have an understanding of the principles and paradigms underlying distributed systems software and applications.

2. Have substantial expertise in key areas of Internet programming and distributed computing,

3. Be able to apply acquired techniques and knowledge to contribute to the development and implementation of enterprise software systems in organisations,

4. Be able to apply Internet-based distributed computing systems and algorithms to e-Science and e-Business applications.

	Syllabus Contents (Main topics):

Foundations of Distributed Systems

Sockets API

Interprocess communications

Distributed objects and remote invocation

Distributed file systems

Security issues

CORBA

Distributed Algorithms

Synchronous and asynchronous network algorithms

Resource allocation, communication, consensus among distributed processes

Distributed data structures, data consistency, deadlock detection, leader election

Distributed Architectures

2-tier

N-tier

Service-oriented

Cluster Computing

Grid Computing

	Assessment Procedure:

60% of the final mark is from an exam, and 40% of the activity in lab experiments.

	Indicative Sources:

Books:

1. Andrew Tanenbaum, Maarten Van Steen, Maarten Van Steen. Distributed Systems: Principles and Paradigms. Prentice Hall, 2002.

2. George F. Coulouris, George Coulouris, Tim Kindberg, Jean Dollimore. Distributed Systems: Concepts and Design. Addison-Wesley, 2005.

3. Mark Baker and Rajkumar Buyya. Cluster Computing at a Glance, High Performance Cluster Computing: Architectures and Systems (Vol. 1). Prentice Hall, NJ, USA, 1999.

4. Paulo Veríssimo and Luis Rodrigues. Distributed Systems for System Architects. Kluwer Academic Press, ISBN 0-7923-7266-2

5. Dr. Z. Juhasz, Peter Kacsuk, Peter Kacsuk (Editor), Dieter Kranzlmuller, Dieter Kranzlmuller (Editor). Distributed And Parallel Systems: Cluster And Grid Computing. Springer, 2004.

URLs (Web sites):

1. IEEE Distrubuted Systems online http://dsonline.computer.org/portal/site/dsonline/index.jsp
2. Cluster Computing Info Centre http://www.buyya.com/cluster/
3. Grid Computing Info Centre http://www.gridcomputing.com/

	Course Title:
	Metaheuristics

	Course Code:
	MH

	Course Status:
	Specific - Area 1 Algorithms and Complexity

	Recommended prior study:

Introduction to algorithms

Design and Analysis of Algorithms

C/C++ programming

	Learning outcomes:

This course introduces advanced metaheuristic paradigms. After completing the course, the student should know the main principles of problem solving with metaheuristics.

The student should know how to:

1. Use a metaheuristic to solve an optimisation problem

2. Design and implement solution algorithms from metaheuristics.

3. Analyse and test metaheuristic performance

	Aims & Objectives:

The course covers a range of advanced metaheuristics such as Local Search, Genetic Algorithms, Tabu Search, Simulated Annealing, Variable Neighbourhood Search, Multi-Start methods, GRASP algorithms, Scatter Search, Ant Colony Systems, Particle Swarm Optimisation, etc.

The main objective of this course is studying techniques for solving optimisation problems by using metaheuristics to design efficient and flexible algorithms.

Course covers theoretical design as well as implementation issues in the main application areas: Transport problems, Bioinformatics, Data Mining, Network Design, Scheduling, Routing, Location, Packing, and other Combinatorial Optimisation Problems.

	Syllabus Contents (Main topics):

Metaheuristic Concept

Local Search

Multi-Start Methods

Tabu Search
Simulated Annealing

Variable Neighbourhood Search

GRASP

Genetic Algorithms

Scatter Search

Ant Colony Systems

Particle Swarm Optimization

Comparative Analysis of Algorithms

	Assessment Procedure:

20% of the final mark is from homework exercises, 20% from the project, and 60% from the final exam.

	Indicative Sources:

The main issues of this course can be found in these

Books:

1. Genetic Algorithms, D.E. Goldberg (1989)

2. “Modern Heuristic Techniques for Combinatorial Problems” C. Reeves (1993)

3. “Applications of Modern Heuristic Methods” V.J. Rayward-Smith (1995).

4. “Tabu Search”. M. Laguna, F. Glover (1997).

5. “How to Solve It: Modern Heuristics”, Michalewicz y Fogel (2000)

6. Oates et al. (2000)
7. Bhargava & Ye (2002)
8. Optimization Software Class Libraries Voss y Woodruff (2002)

9. “Scatter Search” M. Laguna, R. Martí (2002).

10. Genetic Algorithms (Reeves y Rowe (2002)

11. “Metaheuristics” Glover y Kochenberger (2003)

12. Dorigo y Stuztle (2004)

	Course Title:
	Software Measurement and Testing

	Course Code:
	SMT

	Course Status:
	Specific - Area 2 Computer Systems and Networks

	Recommended prior study:

The course is built on many of the ideas that are introduced in the software development and engineering (e.g. ‘Software Design’) courses so these modules are essential. The sections on testing will also require experience of programming in Java or another OO language. An experience of working in a team on a large software engineering project will be an advantage. It is strongly recommended to use a Quiz covering these subjects as an entry to this module.

	Learning outcomes:

On completion of this course, students will be able to:

1. Describe how quality issues affect each aspect of the software development life-cycle.

2. Choose appropriate strategies for software testing and validation, and discuss how to implement them.

3. Demonstrate understanding of the theory of software metrics and be able to make software measurements in practice.

4. Relate quality to the current standards for process improvement.

5. Research a given topic using a variety of sources including books, current articles and research papers and web-resources.

6. Give a written account of their findings (suitable for inclusion in a company report).

7. Give a seminar-style presentation of their findings using appropriate audio-visual aids.

	Aims & Objectives:

By the end of this course the students should be able to:

1. Understand the theoretical aspects of software testing

2. Introduce the concepts of software measurement and its role in the planning and monitoring of software development projects;

3. Apply the basic theory of software measurement to the development of measurements for attributes of software systems, processes and resources;

4. Examine in detail a range of methods for testing software, and the contributions that they can make to achieving goals for the quality of software.

	Syllabus Contents (Main topics):

Quality: Quality issues in the life-cycle model. Quality planning and management. Quality at the requirements stage: negotiation, setting achievable goals. Aspects of quality: reliability, maintainability, correctness, usability. Risk analysis and management.

Measurement:The fundamentals of Measurement Theory. Introduction to Metrics (Quality metrics, cost metrics and process metrics). Function points and object points. Estimation Models and Techniques (Top-down/Bottom Up, From Scratch, Analogy, Analytical Models (Cocomo, Putnam, etc.), Custom Models). Statistics: data collection and analysis.

Inspection: Code walk-through, inspections, reviews. Comparison of different approaches. Effective follow-up: collection of data, review feedback.

Testing: Requirements, Unit, integration and system testing, validation. Structural testing: coverage techniques. Behavioural testing: domain testing, finite state testing. Mutation and fault seeding. Tools and instrumentation.

	Assessment Procedure:

Group project (implementation) 30%; Assignment (formal specification) 20%; Examination 50%.

	Indicative Sources:

Books:

1. William A. Florac and Anita D. Carleton, Measuring the Software Process; ISBN: 0201604442, Addison-Wesley (1999).

2. I.Sommerville, Software engineering, 5th Edition, Addison Wesley, (ISE reprint).

3. Fenton, Norman E., Whitty & Iizuka (1996) Software Quality Assurance & Measurement: A Worldwide Perspective, Thomson Computer Press.

4. Beizer B. (1990) Software Testing Techniques, Second edition, Van Nostrand Reinhold.

5. Horch J. W (1996) Practical Guide to Software Quality Management, Artech House Computer Science, 259p

6. IEEE (2002) IEEE Standards Collection - Software Engineering, 2002 edition, IEEE, USA.

7. Kan Stephen H. (1995) Metrics and Models in Software Quality Engineering, Addison-Wesley.
8. L Tamres, Introducing Software Testing, 2002

9. T Gilb, Principles of Software Engineering Management, Addison Wesley, 1987

10. The Art of Software Testing, 2nd ed., Glenford J. Myers, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004. (optional)

	Course Title:
	Network Theory

	Course Code:
	NT

	Course Status:
	Specific - Area 2 Computer Systems and Networks

	Recommended prior study:

Calculus and linear algebra

Linear differential equations

Calculation and properties of eigenvalues and eigenvectors of matrices

Experience with computer programming

	Learning outcomes:

Upon completion of this course, you should have the ability to:

1. Understand the basic concepts and terminology in graph theory

2. Begin to understand and hopefully to appreciate the role of Computer algorithms

3. Demonstrate understanding in evaluating the performances of computer networks

	Aims & Objectives:

1. This course will introduce and develop the mathematical theory of networks, particularly social and technological networks, with applications to important network-driven phenomena in epidemiology of human infections and computer viruses, the Internet, network resilience, web search engines, and many others.
2. Topics to be covered will include experimental studies of social networks, the world wide web, information and biological networks; methods and computer algorithms for the analysis and interpretation of network data; graph theory; models of networks including random graphs, preferential attachment models, and the small-world model; computer simulation methods; network dynamics.

	Syllabus Contents (Main topics):

Graph theory and linear algebra
Graph theory and social network analysis

Computational complexity of algorithms

Algorithms. Computer algorithms for the analysis of networks

Network clustering

Generating functions and degree distributions

Random graphs and growing graphs

Preferential attachment models and the small-world model

	Assessment Procedure:

50% of the final mark is from an exam and 50% of the activity in solving the exercises

	Indicative Sources:

Books:

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Upper Saddle River, NJ (1993)
2. S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks, Oxford University Press, Oxford (2003)

3. Degenne and M. Forse, Introducing Social Networks, Sage, London (1999)

4. F. Harary, Graph Theory, Perseus, Cambridge, MA (1995)

5. C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA (2000)

6. J. Scott, Social Network Analysis: A Handbook, 2nd edition, Sage, London (2000)

7. S. Wasserman and K. Faust, Social Network Analysis, Cambridge University Press, Cambridge (1994)

8. D. J. Watts, Six Degrees: The Science of a Connected Age, Norton, New York (2003)

9. D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ (1996)

10. R. J. Wilson, Introduction to Graph Theory, 4th edition, Addison-Wesley, Reading, MA (1997)

	Course Title:
	Network Performance Analysis

	Course Code:
	NPA

	Course Status:
	Specific - Area 2 Computer Systems and Networks

	Recommended prior study:

Registration in PhD program in Computer Science

	Learning outcomes:

Students will

1. Gain understanding of basic architecture and service model of the Internet;

2. Understand the architecture of routers;

3. Appreciate the obstacles in introducing new network services into the Internet, and how new architectures and service models.

	Aims & Objectives:

The aim of this course is for the student to

1. Understand the basic architecture and service model of the Internet;

2. Understand the architecture of routers;

3. Appreciate the obstacles in introducing new network services into the Internet, and how new architectures and service models aim to overcome these obstacles and facilitate more rapid introduction of services.

	Syllabus Contents (Main topics):

The following topics will be covered:

Overview/review of IP

Router architectures

Programmable and extensible network architectures

Application layer service models

To achieve this we will attempt to survey ongoing work on network systems and services and explore (in the course of that survey):

Motivation behind different research projects

Assumptions and trends

Obstacles: potential showstoppers – needed changes

Benefits: Service and applications

	Assessment Procedure:

Students presentations, participation in discussions and solution of software assignments

	Indicative Sources:

Research papers and material from the Internet

	Course Title:
	Network Security

	Course Code:
	NS

	Course Status:
	Specific - Area 2 Computer Systems and Networks

	Recommended prior study:

Network protocols

Operating systems

	Learning outcomes:

After the course, students will be able to understand basic security principles and apply them.

	Aims & Objectives:

Familiarize students with security concepts

	Syllabus Contents (Main topics):

Cryptography

Software reliability and robustness

Protocols

Auditing

Security policies

Access control

Authentication

Accounting

Intrusion methods

Secure programming paradigm

	Assessment Procedure:

Written exam, home work

	Indicative Sources:

Books:

Ross Anderson: Security Engineering (available online at

http://www.cl.cam.ac.uk/~rja14/book.html)

	Course Title:
	Semantics of Programming Languages

	Course Code:
	SPL

	Course Status:
	Specific - Area 3 Programming Languages

	Recommended prior study:

Theory of Programming Languages

	Learning outcomes:

The course gives basic knowledge on static semantics and dynamic semantics of programming languages.

	Aims & Objectives:

The course aims are to describe concepts of lexical, syntax and semantic aspects of programming languages. Basic knowledge of lexical and syntax analysis strategies is obligatory before introducing principles of static and dynamic semantics. Attribute grammars as a tool to describe static semantic rules are presented. Operational, axiomatic and denotational methods of dynamic semantics to describing meaning of expressions, statements and program units follow.

	Syllabus Contents (Main topics):

Formal languages

Lexical Aspects of Programming Languages

Lexical units (lexemes)

Syntactic Aspects of Programming Languages
Grammars as formal method of describing syntax

Context-free grammars

Grammars and Recognizers

Finite State Automata (FSA)

Push-down (stack) automata

Semantic Aspects of Programming Languages
Static semantics

Attribute grammars

Dynamic semantics

Operational Semantics
Basic process. Evaluation

Axiomatic Semantics
Assertions – pre conditions and post conditions

Denotational Semantics

	Assessment Procedure:

Exam

	Indicative Sources:

Books:

1. Sebesta R., Concepts of Programming Languages, IE Pearson Education, Addison Wesley Publ. Com., 7th Edition, 2006.

2. Aho A., R.Sethi, J.Ullman, Compilers Principles, Techniques and Tools, Prentice Hall Inc., International Edition, 2003.

3. Meyer B., Introduction to the Theory of Prog Lan, Prentice Hall, 1990.

	Course Title:
	Type Systems for Programming Languages

	Course Code:
	TSPL

	Course Status:
	Specific - Area 3 Programming Languages

	Recommended prior study:

Programming

Programming Languages

Semantics of Programming Languages

	Learning outcomes:

At the end of the course a student will be able to understand:

1. The principles of type systems

2. The differences between the type checking and type inference

3. The relationship between type systems and constructive logic

4. The limitations of type systems

	Aims & Objectives:

The goal of this course is to study different type systems and understand their use to impose modularity, composability, data structuring and early verification. Modern type systems are applied in many different contexts, including programming languages, document-centric systems, static program analysis and reliable distributed computing.

	Syllabus Contents (Main topics):

Untyped lambda-calculus

Simply typed lambda-calculus

Curry-Howard isomorphism

Polymorphic lambda-calculus

Type checking and type inference

ML style polymorphism

Recursive types

Subtyping

Bounded quantification

Dependent types

	Assessment Procedure:

Individual project (implementation) 50%; Examination 50%.

	Indicative Sources:

Books:

1. B. Pierce, Type Systems and Programming Languages, MIT Press, 2002.

2. B.Pierce edt. Advanced Topics in Types and Programming Languages, MIT Press, 2005.

3. M. Sorensen, P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, Elsevier, 2006.

	Course Title:
	Implementation of Programming Languages

	Course Code:
	IPL

	Course Status:
	Specific - Area 3 Programming Languages

	Recommended prior study:

Programming

Programming Languages

Automata and Language Theory

	Learning outcomes:

After the course, students will be able to:

1. Uderstand and apply the principles of compiler construction;

2. Rsearch, design, and develop solutions for problems in computer and information systems.

	Aims & Objectives:

This course offers principals, trends, challenges and practice in the area of compiler construction, including understanding of the implementation of modern programming languages, issues connected with memory organization and role and structures of virtual machines. Recent advances and modern applications in the field of compiler construction are presented.

Each student is expected to contribute to the extension of the field of compiler construction and implementation of emerging new programming languages.

	Syllabus Contents (Main topics):

Notions of formal languages, grammars, classification of formal languages

Lexical analysis (based on the notion of finite automata)

Syntax analysis (top-down and bottom-up analysis, LL and LR parsers)

Context analysis (symbol table, visibility rules)

Issues related to program execution (data format, classes of memory allocation, dynamic bindings)

Code optimization

Code generation

Garbage collection strategies

Virtual machines

Issues specific for particular programming paradigms (object-oriented, functional)

Tools for constructing compilers

	Assessment Procedure:

Individual project (implementation) 50%; Examination 50%.

	Indicative Sources:

Books:

1. Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman; Addison Wesley;

2. Crafting a Compiler with C by Charles Fischer and Richard LeBlanc; Addison Wesley

3. Compiler Design (International Computer Science Series); Renhard Wilhelm, Dieter Maurer; Addison Wesley

	Course Title:
	Advanced Operating Systems

	Course Code:
	AOS

	Course Status:
	Specific - Area 4 Software Systems and Methodologies

	Prerequisites:

Undergraduate course in Operating Systems

	Learning outcomes:

At the end of the course students will be able to understand:

1. The fundamental concepts in modern OS;

2. The different strategies in the design of a OS;

3. The different implementation strategies;

4. The different strategies in the design and implementation of a OS for distributed systems.

	Aims & Objectives:

This is an advanced course on OS. Its goals are to:

1. Introduce basic and advanced concepts on OS.

2. Provide an understanding of technical details in design and implementation OS.
3. Provide students with experience on critical reading and reviewing of research papers in OS.

4. Provide students with practical experience on OS.

	Syllabus Contents (Main topics):

This course studies fundamental concepts in modern operating systems, emphasizing the design and implementation of operating systems for distributed systems. Specific topics include:

Operating system design

Concurrency

Virtual memory

Interprocess communication

Distributed systems

Protection and security

Local and distributed file systems

Virtual machines

	Assessment Procedure:

Students will be required to submit at least two reviews of papers on the reading list. Students will also be required to submit a written research project plan, to review their progress with the instructor during the course and to submit the project at the end of the course. An oral presentation of the project results will also be required.

	Indicative Sources:

Books:

1. E. W. Dijkstra. My recollections of operating system design. Operating Systems Review, 39(2), April 2005.

2. E W. Dijkstra. The structure of the THE multiprogramming system. Communications of the ACM, 11(5):341-346, May 1968.

3. R.C. Daley and J.B. Dennis. Virtual memory, processes, and sharing in Multics.Communications of the ACM, 11(5):306-312, May 1968.

4. D.M. Ritchie and K. Thompson. The UNIX time-sharing system. The Bell System Technical Journal, 57(6):1905-1929, July/August 1978. Copyright 1978 AT&T. All rights reserved.

5. Robert P. Goldberg. Survey of Virtual Machine Research. IEEE Computer Magazine 7(6), pp. 34-45, Jun. 1974.

6. J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM Transactions on Computer Systems, 2(4):277-288, November 1984.

7. Lampson, B. W. Hints for computer system design. Operating Systems Review, 17(5), Dec. 1983.

8. Tanenbaum. Modern Operating Systems. Prentice Hall (1992).

9. W. Richard Stevens. Advanced Programming in the UNIX Environment. Addison Wesley, 1992.

	Course Title:
	Advanced Software Engineering

	Course Code:
	ASE

	Course Status:
	Specific - Area 4 Software Systems and Methodologies

	Recommended prior study:

Assuming a basic knowledge of software engineering principles

	Learning outcomes:

Having completed the course, the students should be able to:

1. Develop an application that uses J2ME and J2EE technology;

2. Develop complex, evolving (software-intensive) systems;

3. Describe the design of an application;

4. Plan a software engineering process to account for quality issues and non-functional requirements;

5. Describe the status of the development of the application;

6. employ a selection of concepts and techniques to complete a small-scale study into one of the advanced topic areas;

7. Apply the knowledge of software process and software tools project;

8. Plan software development, lead development activities, improve software processes used, and increase developer productivity in software projects;

9. Use the requirements as a guide for evaluating a software project;

10. Develop a work plan for a large/mid-size software project demanding high-quality deliverables;

11. Be able to plan a software project taking into account Software Engineering standards and models

12. Take leading roles in software development and management processes within different industrial approaches to software production;

13. Apply of the CMMI models for improving organizational software processes;

14. Plan software development, lead development activities, improve software processes, and increase developer productivity in software projects;

15. Embark on more in-depth research or practice in software engineering.

16. And more

	Aims & Objectives:

This course covers both state-of-the-practice and state-of-the-art technique of advanced software engineering. It examines the concepts and techniques associated with a number of advanced and industrially relevant topics, relating to both the product and processes of software engineering. It focuses on advanced specification and design in UML, component-based software engineering, rapid development processes and techniques, advanced validation and verification methods, configuration management, and other advanced topics. It discusses theoretical issues such as software life cycle processes, their products and product quality in accordance with current ISO and IEEE software engineering standards.

	Syllabus Contents (Main topics):

The topics of this course cover:

Theoretical issues on software life cycle processes and their products and product quality.

Extreme Software Engineering approaches as ways of increasing software developer productivity. Models of agile processes. Pair programming. Planning in an agile process. Testing in an agile process. Reverse Engineering, Maintenance & Evolution
Development process and its products

Software Supporting life cycle processes

Project management activities providing planning and monitoring software product quality during a project,

ISO and IEEE classifications of software life cycle processes.

Software products : ISO and IEEE classification of software products and their characteristics

Software quality and its model

The ISO software quality model

Software quality characteristics and sub-characteristics.

Software product metrics; internal and external metrics.

Software quality measurement and assessment.

Requirements Engineering

Software Patterns

Formal methods

Advanced specification and design in UML, component-based software engineering, rapid development processes and techniques, advanced validation and verification methods, configuration management.

Architecture Description Languages

Pattern-Oriented Software Architecture

Component-based Development

Distributed Software Architectures using Middleware

Enterprise Application Integration

Architectures for Mobile and Pervasive Systems

Model Driven Architecture

	Assessment Procedure:

60% of the final mark is from an exam. 40% is from practical exercises, reports, and presentations. In place of some of the exercises, students undertake a literature survey of an area relevant to the course topics.

	Indicative Sources:

Books:

1. ISO/IEC 12207:1995 “Information technology – Software life cycle processes”. Geneva: ISO, 1995.

2. IEEE/EIA 12207.0-1997 “Industry Implementation of International Standard ISO/IEC 12207”. IEEE Standards: Software Engineering, Volume One: Customer and Terminology Standards. 1999.

3. IEEE/EIA 12207.1-1997 “Software life cycle processes – Life cycle data”. IEEE Standards: Software Engineering, Volume One: Customer and Terminology Standards. 1999.

4. ISO/IEC 9126–3:2003. Software engineering – Product quality – Part 3: Internal metrics. Geneva: ISO, 2003

5. The Unified Modeling Language User Guide, by Grady Booch et al, Addison-Wesley

6. The Unified Software Development Process, by Ivar Jacobson et al, Addison-Wesley

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns, Addison-Wesley Publishing Company, Menlo Park, California, 1995.

8. Stephen T. Albin, The Art of Software Architecture: Design methods and Techniques, Wiley Publishing, Inc., Indianapolis, Indiana, 2003.

9. David Budgen, Software Design, 2nd edition, Addison-Wesley, Pearson Education Limited, Essex, England, 2003.

10. Mary Shaw and David Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, Upper Saddle River, New Jersey, 1996

11. ISO/IEC 15507:1998 “Information technology – Software process assessment”. Geneva: ISO, 1998.

12. ISO/IEC 9126–1:2001. Software engineering – Product quality – Part 1: Quality model. Geneva: ISO, 2001

13. ISO/IEC 9126–2:2003. Software engineering – Product quality – Part 2: External metrics. Geneva: ISO, 2003.

	Course Title:
	Concurrent Systems

	Course Code:
	CS

	Course Status:
	Specific - Area 4 Software Systems and Methodologies

	Recommended prior study:

Basic OS principles, and programming in JAVA using threads;

Principles of data communications, & communications architectures, services & protocols.

	Learning outcomes:

Having completed the course, the students should be able to:

1. Understand the concepts underlying concurrent systems

2. Understand how to specify concurrent systems and how concurrent systems are supported by operating system features.

3. Describe the main concepts of concurrency, their problems and solutions

4. Describe the main features for concurrency in operating systems and major programming languages

5. Describe the main approaches to specification of concurrency

6. Specify simple concurrent systems in LOTOS

7. Understand how concurrent may be constructed using a variety of tools and approaches.

8. And more

	Aims & Objectives:

The course gives an understanding of the concepts of underlying concurrent systems. It presents fundamental algorithms and covers techniques for formally specifying and verifying concurrent systems. Both message-passing and shared-memory models of concurrency will be considered.

	Syllabus Contents (Main topics):

The topics of this course covers:

The need for rigorous methods of designing concurrent software

Modeling concurrent activity starting with JAVA threads

Forms of communication, architectures.

Means of communication (Shared memory, Direct communication between processes)

Unix (Fork processes, Communication using signals, pipes, sockets, shared memory)

Communicating Sequential Processes (CSP)

Models of Concurrency: true concurrency (Petri Nets), interleaved concurrency (CSP, CCS, LOTOS). Process Models: events, synchronisation, processes, behaviour

Fundamentals of CSP ; Operational Semantics ; Parallel Operators ; Synchronous Parallel ; Alphabetized Parallel ; Interleaving ; Generalized Parallel ; Parallel Composition ; Communication Protocols ; Distributed termination ; Specific Ways to Avoid Deadlock ; Network Decomposition ; Encryption ; Fault Tolerance ; ect.

Concurrency: precedence graphs, fork/join, cobegin/coend ; Mutual Exclusion: semaphores (reprise), critical regions, monitors. Inter-Process Communication: message-passing, rendezvous, shared variables, process naming. Deadlocks: conditions (reprise), resource allocation graphs, prevention, avoidance, detection, recovery.

Operating System Support: inter-process communication and system structuring, Unix processes

Reasoning about concurrent (state assertions; temporal assertions; safety properties ; invariants ; liveness properties; fairness; proof rules; verification examples)

Synchronization algorithms for shared-memory systems ; Synchronization algorithms for message-passing systems; Algorithms for detecting stable properties in message-passing systems; Fault tolerance in message-passing systems ; Broadcast and multicast in message-passing systems ; Clock synchronization: algorithms and lower bounds.

	Assessment Procedure:

60% of the final mark is from an exam. 40% is from practical exercises, reports, and presentations. In place of some of the exercises, students undertake a literature survey of an area relevant to the course topics.

	Indicative Sources:

Books:

1. J. Bacon, Concurrent Systems, Addison-Wesley, 2nd edition, 1998, ISBN: 0201177676

2. J. Magee, J. Kramer, Concurrency – State Models & Java Programs, Wiley, 1999, ISBN: 0471987107

3. G. R. Andrews, Concurrent Programming: Principles and Practice

4. K. M. Chandy and J. Misra, Parallel Program Design: A Foundation

5. K. R. Apt and E. R. Olderog, Verification of Sequential and Concurrent Programs

	Course Title:
	Advanced Distributed Systems

	Course Code:
	ADS

	Course Status:
	Specific - Area 4 Software Systems and Methodologies

	Recommended prior study:

Computer Architecture

Networks and Data Communications

Operating System

Software Engineering

Data Structures

Programming

	Learning outcomes:

After the course, students will be able to understand and apply the principles of distributed systems to research, design, and develop solutions for problems in computer and information systems.

	Aims & Objectives:

This course offers principals, trends, challenges and practice in the area of distributed systems and algorithms, including interprocess communication, operating systems, middleware, concurrency, common systems and applications. Recent advances and modern applications in the expanding field of distributed systems are presented.

Each student is expected to contribute to the extension of the field of distributed computing and applications.

	Syllabus Contents (Main topics):

Principles of Distributed Systems - an overview of the most important aspects, principles, and challenges in distributeed systems.

Introduction. Communication and processes. Naming, synchronization (time, clocks, global state, mutual exclusion, distributed transactions). Consistency and replication (consistency models, distribution and replication protocols). Case Study, applications

Fault-tolerance (communication, process resilience, recovery), Security (secure communication, access control, security management). Case studies

Principles in Distributed Algorithms – design and analysis of distributed algorithms, limitations and restrictions for distributed computing.

Fundamentals - basic algorithms in message-passing systems, leader election, mutual exclusion. Fault-tolerant consensus, causality and time.

Abstractions - broadcast and multicast, distributed shared memory, improving the fault tolerance of algorithms.

Advanced algorithms - randomization, failure detectors, synchronizers, self-stabilizing algorithms

Fully Decentralized Systems - scalability, fault-tolerance, and self-organization.

Unstructured peer-to-peer systems (Gnutella, random networks),

Structured peer-to-peer systems (architecture, topologies of overlay networks, topology maintenance, lookup algorithms, proximity routing, replication methods, self-organization)

Scalable distributed data structures (Randomized Overlays, SkipNet/Skip Graphs), applications (file systems, discovery services, content distribution, serverless web).

Programming: middleware, languages, applications.

	Assessment Procedure:

Group project (implementation) 30%; Assignment (formal specification) 20%; Examination 50%.

	Indicative Sources:

Books:

1. Gerard Tel, Introduction to Distributed Algorithms. 2nd edition, Cambridge Press, 2000.

2. Andrew S. Tanenbaum, Maarten van Steen, Distributed Systems: Principles and paradigms, Prentice Hall, 2002

3. Hagit Attiya, Jennifer Welch, Distributed Computing: Fundamentals, Simulations and Advanced topics, Wiley & sons, 2004

4. George Coulouris, Jean Dollimore, and Tim Kindberg, Distributed Systems Concepts and Design, 3rd edition, Addison Wesley, 2001

5. Additional research papers and web sites

	Course Title:
	Security Issues and Principles

	Course Code:
	SIP

	Course Status:
	Specific - Area 4 Software Systems and Methodologies

	Recommended prior study:

Undergraduate-level courses in Computer Programming and Discrete Mathematics

	Learning outcomes:

Students completing this course will be able to:

1. Identify the critical concepts of information security

2. Outline the phases of a security systems life cycle and the role of information security professionals in an organization

3. Describe the common threats, attacks and countermeasures both in personal computers and organizations

4. Identify major national and international laws related to information security

5. Assess risk based on likelihood and impact on an organization and conduct an information security audit

6. Describe contingency, incident response, disaster recovery, and continuity plans within information security architecture.

7. Identify the main components of Operating Systems, Database, Network, Web and Email security systems.

8. Define the various types of firewalls, intrusion detection systems, and physical security protections

9. Describe several symmetric and asymmetric encryption systems, including the standards and known cryptanalytic attacks.

10. Implement different digital signatures, authentication and identification schemes and access control mechanisms

11. Choose among several cryptographic protocols and applications depending on the organizational necessities

12. Analyze known methods both for protecting the privacy of personnel data and for Intellectual Property Protection

	Aims & Objectives:

The main objective of this course is to provide students with an in-depth understanding of the security risks and countermeasures in modern information systems. This includes high-level issues such as security policy (modelling what ought to be protected) and engineering (how we can obtain assurance that the protection provided is adequate). It also involves cryptography and its underlying mathematics. Each successful student will demonstrate knowledge of the main information systems security principles and applications in large and small organizations and in personal computers.

	Syllabus Contents (Main topics):

Introduction to Information Security

Threats and Attacks

Legal Knowledge

Risk Management

The Information Security Audit
Security policies, planning, implementation and evaluation
Operating systems security: Principles and implementation

Database systems security: Principles and implementation

Network security: Principles and implementation

Web and email security: Principles and implementation

Intrusion detection
Private Key Cryptography
Public Key Cryptography
Basics of Cryptanalysis
Authentication and Identification schemes
Cryptographic Protocols and Applications
Privacy Protection
Intellectual Property Protection

	Assessment Procedure:

The final grade for the course will be calculated as follows:

Active class participation

20%

laboratory implementation sessions
30%

Final Exam

45%

Additional work

 5%

	Indicative Sources:

Books:

1. Cryptography and Network Security: Principles and Practice, William Stallings

2. Security in Computing, Charles P. Pfleeger, Prentice-Hall International.

3. Applied Cryptography Protocols, Algorithms, and Source Code in C, Bruce Schneier, John Wiley & Sons.

	Course Title:
	Graphics and Visualization

	Course Code:
	GV

	Course Status:
	Specific - Area 4 Software Systems and Methodologies

	Recommended prior study:

Master degree knowledge and skills in:

Mathematics (Algebra, Analytical and Differential Geometry and Differential Equations, Numerical Mathematics);

Computer Graphics Foundations;

Object Oriented Programming;

Data Structures and Algorithms

Basic knowledge of Physics (Dynamical Mechanics, Optics, Radiosity, Thermodynamics)

	Learning outcomes:

The course gives advanced knowledge and skills in selected topics in Computer Graphics, as well as the methodology of research in Computer Graphics.

	Aims & Objectives:

The course aims are to describe concepts of aspects of advanced geometry modeling for CG, models visualization and interaction.

	Syllabus Contents (Main topics):

Selected problems of geometry modeling (review of B-representation, CSG and volumetric representaion, B- representation, surfaces, NURBS, standards for geometry data archiving and exchange, mesh acquisition and refinement).

Special projection methods (Stereoscopy, spherical and other projections, simulation of camera optics).

Advanced methods of visual reality (Selected topics from ray and photon tracing, radiosity methods, non realistic rendering).

Selected problems of computer animation (models positioning and orientation in space, quaternions, inverse kinematics, deformable objects and human body modeling and animation, 3D morfing, behavioral animation, motion capture problems).

Selected problems of virtual reality (automated models acquisition, large data models visualization, advanced interactivity).

Computer graphics accelerators techniques (graphics pipeline analysis, parallel architectures, grid computing and computer graphics, current trends in graphic cards for PC, computer graphics and mobile computing).

Augmented reality problems (selected methods of computer vision for augmented reality).

Selected problems of data visualization (review of scientific visualization methods, interactive visualization using non linear projections, virtual and augmented reality).

	Assessment Procedure:

Evaluation of the students activities during seminars, individual projects evaluation and face to face exam. Students are expected to write theoretical pert of the project as a conference or journal paper.

	Indicative Sources:

Books:

1. Foley, Van Dam: Fundamentals of Interactive Computer Graphics.1995

2. Encarnacao, J., Strasser, W., Klein, R.: Graphische Daten-verarbeitung 1. R. Oldenbourg Verlag Muenchen, Wien 1996

3. Hill S.,F.: Computer Graphics Using Open GL. Prentice Hall Computer Science Team

4. ACM SIGGRAPH Conference Proceedings (yearly - http://www.siggraph.org)

5. EUROGRAPHIC conference proceedings (yearly)

6. ACM Transaction on Graphics

7. IEEE Transactions on Visualization and Computer Graphics (http://www.ieee.org)

8. IEEE Computer Graphics and Applications - Journal of Graphics Tools

	Course Title:
	Multimedia Technologies

	Course Code:
	MT

	Course Status:
	Specific - Area 4: Software Systems and Methodologies

	Recommended prior study:

Advanced algorithms

Implementation of programming languages

Text processing

Speech technology

Graphics and visualization

	Learning outcomes:

Finishing this course the students should be able to:

1. Critically evaluate the conceptual, social, and technological underpinnings of multimedia technologies;

2. Evaluate multimedia technologies in depth;

3. Specify and develop multimedia systems that meet technical and human-computer interaction requirements;

4. Plan, organise and implement multimedia technologies in different areas;

5. Develop multimedia applications using multimedia authoring tools and contemporary programming languages.

6. Understand and properly use multimedia communications, security and digital rights management;

7. Work with multimedia technologies in both commercial and research contexts.

	Aims & Objectives:

The aims of this course are:

1. To provide students with the theories and practices of current multimedia technologies and techniques;

2. To cover technical areas, such as the representation and processing of different media, multimedia periphery, processing and compression of multimedia elements (text, digital images, audio and video), multimedia software, multimedia communications;

3. To equip students with the advanced specialist knowledge and skills required for the design, development, implementation, evaluation, and management of multimedia technologies.

	Syllabus Contents (Main topics):

Multimedia - definition, planning and application areas;

Technologies for creating multimedia applications;

Technologies for text processing;

Technologies for digital image processing and compression;

Technologies for digital audio processing and compression;

Technologies for digital video processing and compression;

HCI aspects of multimedia systems;

Authoring tools for development of multimedia applications;

Multimedia integration – SMIL;

Multimedia networks and communications;

Video-conferencing systems;

Virtual reality;

Multimedia information security and Digital Rights Management.

	Assessment Procedure:

Written test plus hands-on creating a multimedia application. The final mark is a weighted average of the test (0.40) and the hands-on (0.60).

	Indicative Sources:

Books:

1. Austerberry, D., The Technology of Video and Audio Streaming, Focal Press, 2004.

2. Bates, J., Converged Multimedia Networks, John Wiley and Sons, 2006.

3. Dix, A., Human Computer Interaction, Prentice Hall, 2003.

4. England, E., A. Finney, Managing Multimedia, Addison-Wesley, 1999.

5. Halsall, F., Multimedia Communications, Addison-Wesley, 2001.

6. McGloughlin, S., Multimedia: Concepts and Practice, Prentice Hall, 2001

7. Prabhat, A.K., K.Thakrar, Multimedia Systems Design, Prentice-Hall, 1998.

8. Slowinski, M., T. Kennedy, SMIL: Adding Multimedia to the Web, Sams, 2001.

9. Steinmetz, R., K. Nahrstedt: Computing, Communications & Applications, Prentice Hall, 1995.

10. Steinmetz, R., K. Nahrstadt, Multimedia Fundamentals, Prentice Hall, 2002.

11. Symes, P., Digital Video Compression, McGraw-Hill Education, 2003.

12. Zeng, W., H. Yu, C. Lin, Multimedia Security Technologies for Digital Rights Management, Academic Press, 2006.

URLs (Web sites):

http://sipi.usc.edu/~mendel/msp/
http://bmrc.berkeley.edu/courseware/
http://www.cs.cornell.edu/Info/Faculty/bsmith/mmsyl.htm
http://www.tml.tkk.fi/Opinnot/T-111.350/index_uk.html
http://courses.swinburne.edu.au/Courses/ViewCourse.aspx?mi=100&id=3847
http://www.cmlab.csie.ntu.edu.tw/AMTCourse/Syllabus.html
http://www.d.umn.edu/~cprince/courses/cs3121fall01/lectures/
http://www.eie.polyu.edu.hk/~enkmlam/EIE415/EIE415_MT.htm

	Course Title:
	Computer Games Technologies

	Course Code:
	CGT

	Course Status:
	Specific - Area 4 Software Systems and Methodologies

	Recommended prior study:

Undergraduate-level courses on algorithms and networking, including topics:

Data structures

Graph theory

Complexity analysis

Transmission techniques and protocols

	Learning outcomes:

Having completed the course, the student should:

1. Understand the structure of computer game software

2. Know how to implement and utilize random numbers in computer games

3. Know how to form tournaments

4. Know when to use game trees and how to make them work efficiently

5. Know how to solve the path finding problem in continuous game worlds

6. Know how to implement a computer-controlled actor in a game that has human-like behaviour

7. Understand the different approaches used in decision-making

8. Know how to model the uncertainty involved in modelling the game world

9. Understand the three communication layers related to networking in multiplayer games

10. Know how to implement methods that compensate the networking resource limitations

11. Realize the importance of cheating prevention in computer games and know how to tackle different types of networking attacks

	Aims & Objectives:

The course concentrates on algorithmic problems present in computer games. The aim of the course is to review common solution methods for the game logic (e.g. the game world model and computer-controlled actors), analyse their usability, and describe possible improvements. Apart from single player games, the course focuses on communication in networked multiplayer computer games.

	Syllabus Contents (Main topics):

Introduction to computer games

Anatomy of computer games

Synthetic players

Multiplaying

Games and storytelling

Random numbers

Linear congruential method

Shuffling

Creating game worlds

Forming tournaments

Rank adjustment tournaments

Elimination tournaments

Scoring tournaments

Game trees

Minimax

Alpha-beta pruning

Games of chance

Path finding

Discretizing the game world

Finding the minimum path

Realizing the movement

Decision-making

Levels of decision-making

Finite state machines (FMSs)

Flocking

Influence maps

Modelling uncertainty

Statistical reasoning

Fuzzy sets

Communication layers

Transmission techniques and protocols

Communication, data, and control architectures

Networked applications

Compensating resource limitations

Consistency and responsiveness

Scalability

Protocol optimization

Dead reckoning

Local perception filters

Synchronized simulation

Area-of-interest filtering

Cheating prevention

Packet tampering

Cracking

Collusion

Rule violations

	Assessment Procedure:

70% of the final mark is from an exam, and 30% of the activity in solving the exercises.

	Indicative Sources:

Books:

J. Smed and H. Hakonen, Algorithms and Networking for Computer Games, John Wiley & Sons, Chichester, UK, 2006. ISBN 0-470-01812-7

	Course Title:
	Data Mining

	Course Code:
	DM

	Course Status:
	Specific - Area 5 Information Management

	Recommended prior study:

Data Base Systems

Information and Retrieval Systems

	Learning outcomes:

This course introduces advanced database applications called data mining or knowledge discovery in databases. After completing the course, the student should know the main principles of Data mining principles of organization, algorithms and queries, which can be thought of as an extended form of decision-support queries. The student should know how to:

1. Organize and implement some important extensions to database languages, such as languages primitives that support efficient sampling of data.

2. Design and implement data mining Applications;

	Aims & Objectives:

The course includes the base principles of data-Mining & Decision-Support Queries, the construction of the Decision Trees and data clustering. The main objective of this course is studying techniques for developing algorithms for Data-mining applications, particularly for trade optimization problems in the very large trading data bases.

	Syllabus Contents (Main topics):

Introduction

Introduction.

Related Concepts.

Data Mining Techniques.

Core Topics
Classification.

Clustering.

Association Rules.

Advanced Topics
Web Mining.

Spatial Mining.

Temporal Mining.

Data Mining Products.

	Assessment Procedure:

40% of the final mark is from homework exercises, 10% from the project, and 50% from the final exam.

	Indicative Sources:

Books:

1. Database Systems: The Complete Book Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer D. Widom, Stanford University, Prentice Hall, NY, 2002. Web: http://www.db.stanford.edu/
2. Data Mining: Introductory and Advanced Topics, Margaret H. Dunham, Prentice Hall, 2003.

3. Data Mining: Building Competitive Advantage, Robert Groth, Prentice Hall, 2000

4. Discovering Datamining: From Concept to Implementation, Peter Cabena, Hadjnian, Stadler, Verhees, Zanasi, Prentice Hall, 1998

	Course Title:
	Database Management Systems

	Course Code:
	DBMS

	Course Status:
	Specific - Area 5 Information Management

	Recommended prior study:

Undergraduate-level course on databases, including topics:

Database system architecture and components

Theory and practice of relational databases, including relational languages: SQL, relational algebra and calculus

Writing database applications using em​bedded SQL and standardized interfaces

Basic storage structures and indexing

Conceptual database modeling (ER-model, UML class diagrams) and mapping to a relational schema

Relational database design by normali​zation

Elements of object-oriented and object-relational databases.

	Learning outcomes:

Having completed the course, the student should:

1. Know the tasks of database management systems and their main implementation alternatives, as well as the related theory.

2. Know the principles of query optimization and different kinds of access algorithms, as well as utilization of indexes.

3. Understand the transaction concept and the importance of transaction management.

4. Understand the implications of multiple concurrent users and know the related protocols for concurrency control.

5. Be aware of risks related to different kinds of failures and know the ways of recovering from them.

6. Realize the importance of database security and know control measures against different kinds of threats.

	Aims & Objectives:

This course aims to analyse in detail all the main components of modern database management systems, and goes through several algorithmic alternatives for an effective implementation of those components.

	Syllabus Contents (Main topics):

Query processing and optimization

Advanced search and indexing techniques

Transaction processing concepts

Concurrency control

Recovery techniques

Security and access control

Principles of distributed databases and management of replicated data

Overview of object-oriented data​base management systems

Overview of data warehouses and OLAP

	Assessment Procedure:

60% of the final mark is from an exam, and 40% of the activity in solving the exercises.

	Indicative Sources:

Selected chapters from some of these

Books:

1. T. Connolly, C. Begg: “Database Systems – A Practical Approach to Design, Implementation and Management.

2. C. J. Date: “ An Introduction to Database Systems”, Pearson / Addison-Wesley, 8th ed., 2004.

3. R. Elmasri, S. B. Navathe: “Fundamentals of Database Systems”, Pearson / Addison-Wesley, 5th ed., 2007.

4. H. Garcia-Molina, J. D. Ullman, J. Widom: ”Databases Systems – The Complete Book”, Prentice Hall, 2002.

5. M. Kifer, A. Bernstein, P. M. Lewis: “Database Systems – An Application-Oriented Approach”, Pearson / Addison-Wesley, 2nd ed., 2006

	Course Title:
	Search Techniques

	Course Code:
	ST

	Course Status:
	Specific - Area 5 Information Management

	Recommended prior study:

Undergraduate course on databases

Undergraduate courses on data structures and algorithms

Linear algebra

Overall knowledge of digital media

	Learning outcomes:

After completing the course, the students:

1. Should know the main methods of retrieving the best matching objects for a given query from a large collection. Important is approximating the content of objects by feature extraction. Objects are typically some kinds of documents, searched by keywords, but they may contain also other types of media than text. Moreover, the documents can be linked into a web, where linkage is an important criterion for retrieval.

2. Will have learned the strategies used in web search engines.

	Aims & Objectives:

The goal is to go through the main search techniques used in the field known as “Information Retrieval”. The course considers all types of media, not just text. Thus, there is a connection to the fields “multimedia databases” and “pattern recognition”. Data structures for indexes (especially multidimensional) play a central role in the course. Web search engines are the practical motivation, and therefore hypermedia retrieval is included. Digital libraries are another area of application.

	Syllabus Contents (Main topics):

Keyword selection and indexing of text documents

Similarity measures for text documents

Signature techniques in retrieval

Document ranking in retrieval

Feature extraction from multimedia documents

Reduction of dimensionality

Multidimensional indexes

Indexes for spatial and temporal data

Digital libraries

Similarity measures for structured documents

Similarity measures for hypermedia documents

 Document ranking algorithms in web search engines

	Assessment Procedure:

60% of the final mark is from an exam, and 40% of the activity in solving the exercises.

	Indicative Sources:

Literature is not mandatory, but the main issues of this course can be found from selected chapters of these

Books:

1. R. Baeza-Yates, B. Ribeiro-Neto: “Modern Information Retrieval”, Addison-Wesley, 1999.

2. D. A. Grossman: “Information Retrieval: Algorithms and Heuristics”, Springer, 2004

3. M. Levene: “An Introduction to Search Engines and Web Navigation”, Pearson/Addison-Wesley, 2006.

4. M. S. Lew: “Principles of Visual Information Retrieval”, Springer, 2006.

5. H. Witten, A. Moffat, T. C. Bell: “Managing Gigabytes: Compressing and Indexing Documents and Images”, Morgan Kaufmann, 2nd ed., 1999.

	Course Title:
	Text Processing

	Course Code:
	TP

	Course Status:
	Specific - Area 5 Information Management

	Recommended prior study:

Undergraduate courses in algebra, probability calculus, formal languages and automata

Undergraduate courses on data structures and algorithms

Good programming skills

	Learning outcomes:

After completing the course, the student should

1. Know the main string matching algorithms, both exact and approximate

2. Know the ways of indexing and retrieval of text documents

3. Know the main algorithms for text com​pression

4. Be familiar with structured and semi-structured text repre​sentation and mani​pulation, and related technologies

5. Know the principles of text mining

	Aims & Objectives:

The main part of the course gives the students advanced methods for string (i.e. unstructured text) processing, matching, indexing, retrieval, and com​pression. The emphasis is in the design of efficient algorithms.

The course also explains the representation and pro​cessing of structured and semi-structured text, and their implications to storage and searching. This latter part is more application-oriented.

	Syllabus Contents (Main topics):

String matching algorithms

Algorithms for e.g. edit distance and longest common sub​sequence

Usage of parallelism in text algorithms

Useful data structures for text processing, such as suffix trees

Advanced indexing techniques for text documents: variations on inverted indexes, com​pressed bitmaps, signatures, and multi​dimen​sional indexes

Overview of information theory and source coding

Text compression: dictionary methods, predictive methods

Hypertext, semi-structured text, especially XML and related technologies, including storage and indexing of text documents in data​bases

Elements of text mining

Applications of text algorithms in other areas, such as bioinformatics

	Assessment Procedure:

60% of the final mark is from an exam, and 40% of the activity in solving the exercises.

	Indicative Sources:

Literature is not mandatory, but the main issues of this course can be found from selected chapters of these

Books:

1. T. C. Bell, J. G. Cleary, I. H. Witten: “Text Compression”, Prentice Hall 1990.

2. M. W. Berry (ed.): “Survey of Text Mining: Clustering, Classification and Retrieval”, Springer, 2003.

3. M. Crochemore, W. Rytter: “Text Algo​rithms”, Oxford University Press, 1994.

4. D. Gusfield: “Algorithms on Strings, Trees and Sequences”, Cambridge University Press, 1997.

5. E. R. Harold, W. S. Means: "XML in a Nutshell", O'Reilly, 2nd ed. 2002.

6. G. Stephen: “String Searching Algorithms”, National Academies Press, 1994.

7. I. H. Witten, A. Moffat, T. C. Bell: “Managing Gigabytes: Compressing and Indexing Documents and Images”, Morgan Kaufmann, 2nd ed., 1999.

	Course Title:
	Speech Technology

	Course Code:
	SPT

	Course Status:
	Specific - Area 5 Information Management

	Recommended prior study:

Some undergraduate-level courses on phonetics or related, preferred topics:

Digital Sound

Natural Language Processing

Human functional anatomy
The source-filter theory
Acoustics

Behavioral sciences

	Learning outcomes:

Having completed the course, the student should:

1. Know the basics of human speech production, perception and processing

2. Know the principles of speaker recognition

3. Understand the basics of speech recognition

4. Be able to understand the basics of speech corpora and automatic annotation

5. Know the four basic methods of speech synthesis

6. Understand the possibilities of speech interfaces

	Aims & Objectives:

This course is an introduction into speech technology research.

	Syllabus Contents (Main topics):

Human speech production, perception and processing

Speaker recognition

Speech recognition

Speech synthesis

Corpora & automatic annotation

Speech interfaces

	Assessment Procedure:

60% of the final mark is from an exam, and 40% of the short paper.

	Indicative Sources:

Selected chapters of some of these

Books:

1. A Course in Phonetics, Peter Ladefoged 2000

2. Review of text-to-speech conversion for English, Dennis Klatt 1987 (available online)

3. Digital Speech Processing, Synthesis, and Recognition, Sadaoki Furui 2000

4. Voice User Interface Design, Cohen et al. 2004

	Course Title:
	Natural Language Processing

	Course Code:
	NLP

	Course Status:
	Specific - Area 5 Information Management

	Recommended prior study:

No mandatory prerequisites are listed in the form of courses. However, prior undergraduate-level knowledge of the following areas is beneficial and to some extent assumed (although a brief introduction is provided in the course):

Probability theory

Finite-state automata and transducers

Context-free grammars and parsing

Machine learning and pattern recognition, in particular Bayesian models

Unification

Programming in Perl/Python

No prior knowledge of linguistics and linguistic theories is assumed. A brief introduction is given in the areas of:

Morphology

Part-of-speech analysis

Constituency and dependency syntax

Agreement phenomena

Subcategorization

Coreference and anaphora

Lexical semantics

The language of tuition as well as the model language is English. Therefore, a good English knowledge is necessary.

	Learning outcomes:

Having completed the course, the student should:

1. Understand the levels of linguistic analysis applied to human language and the corresponding computational models.

2. Have a working knowledge of the principal algorithms for morphological, syntactic, and limited semantic analysis of written text.

3. Understand the main approaches to resolution of natural language ambiguity.

4. Understand the processing pipeline applied in modern information extraction systems.

5. Know several document similarity measures which go beyond simple word-to-word matching, such as the latent semantic model.

6. Understand the application of linguistic domain knowledge in common tasks such as document search.

7. Be able to comprehend published research articles in the areas covered by the course.

	Aims & Objectives:

The purpose of the course is to introduce the students to the methods of computational analysis of written language. The course provides an overall introduction to the architecture of modern language processing systems as well as the key algorithms used at the various stages of the analysis.

	Syllabus Contents (Main topics):

Finite-state morphology modeling

POS tagging

Statistical language modeling

Word sense disambiguation

Phrase-structure syntax and parsing

Dependency syntax and parsing

Probabilistic parsing

Feature structures and unification

Semantic analysis

Information extraction

Information retrieval

Application of natural language processing in the biomedical domain: a case study

	Assessment Procedure:

60% of the final mark is from the final exam, and 40% of the activity in solving the exercises and the final project.

	Indicative Sources:

Selected chapters of the following

Books:

1. Daniel Jurafsky and James H. Martin: Speech and Language Processing.

2. Christopher Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing.

3. and the reference book

4. Ruslan Mitkov (ed.), The Oxford Handbook of Computational Linguistics.

	Course Title:
	Autonomous Agent Technology

	Course Code:
	AAT

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Foundations of artificial intelligence (master level course)

	Learning outcomes:

A person having studied the material covered in this module is expected to be able to:

1. Explain the role of AI, agent technologies and multiagent systems

2. Conceptualize the system; decompose it into components and subproblems

3. Apply advanced AI methods and techniques for system development

4. Apply different reasoning techniques for problem solving and decision making

5. Generate novel solutions and made complex decisions

	Aims & Objectives:

To get acquainted with the role of AI, agent technologies and multiagent systems in various applications; to master complex system conceptualization and decomposition; to master to apply advanced AI methods and techniques for complex system development; to learn different reasoning techniques for problem solving and decision making

	Syllabus Contents (Main topics):

Intelligent agents and their programs; Problem solving by searching; Search algorithms for agents

Logical reasoning systems

Simple planning agents

Planning and acting

Reasoning under uncertainty; Intelligent agents via soft computing

Probabilistic reasoning systems

Case-based reasoning

Simple and complex decision making

Learning from observations; Learning in neural networks; Reinforcement learning

Agents that communicate and share knowledge; Multiagent systems and societies of agents

Distributed computing aspects; Distributed problem solving and planning

Distributed decision making; Distributed models for decision support

Learning in multiagent systems

Designing agents; Agent applications

	Assessment Procedure:

Written examination

	Indicative Sources:

Books:

1. Russell S., Norvig P. Artificial Intelligence. A Modern Approach. Prentice Hall, 2003.

2. Weiss G. (Ed.) Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence, The MIT Press, 2000.

3. Murch R. and Johnson T. Intelligent Software Agents, Prentice Hall PTR, 1999.

	Course Title:
	Machine Learning

	Course Code:
	ML

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Undergraduate-level courses in calculus, linear algebra, probability and statistics, and artificial intelligence

Mathematical maturity, familiarity with mathematical logic, predicate calculus
Proficient with programming in at least one language (C/C++/Java/Lisp/Prolog) is required. Practical and Professional Issues in Computer Science, Design of Algorithms, Foundations of Computer Science

	Learning outcomes:

Having completed the course, the students should:

1. Understand the basic issues of machine learning.

2. Be familiar with supervised vs. unsupervised learning.

3. Be familiar with issues such as concept learning, Inductive bias, feature extraction, classification, clustering, instance based learning, reinforcement learning, computational learning theory

4. Be aware problems such as noise, outliers, missing values, curse of dimensionality.

5. Have knowledge about some specific algorithms such as, Version spaces, decision tree induction, Naïve Bayes classifier, k-nearest neighbour classifier, genetic algorithms, neural networks, regression and function approximation algorithms, feature projection based algorithms, k-means algorithm,.

6. Be able to select and apply an appropriate learning algorithm, given a domain.

	Aims & Objectives:

1. Introduce students to several prominent areas of machine learning, including feature extraction, decision trees, neural networks, genetic algorithms, Bayesian learning, and reinforcement learning

2. Illustrate what types of problems the different methods are suited for

3. Give students hands-on experience with these methods and tools for implementing and using them on real-world problems.

4. Give students experience with performing simulations and doing statistical data analysis of the results.

5. Give students knowledge of and experience with current theoretical tools for designing, analyzing, and evaluating these machine learning methods.

6. Provide students with experience in reading research papers and giving presentations.

	Syllabus Contents (Main topics):

Overview of Machine Learning, feature extraction

Concept Learning

Version Spaces

Classification problem

Decision Tree Induction

Evaluating Hypotheses

Bayesian Learning, Naive Bayesian Learning

Instance-Based Learning

computational learning theory

Function Approximation algorithms

Neural Networks

Genetic Algorithms

Reinforcement Learning

K-means clustering

Student presentations

	Assessment Procedure:

60% of the final grade is from the term project. 40% of the final grade is from the presentations, and class participation.

	Indicative Sources:

Books:

1. T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.

2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

3. P. Langley, Elements of Machine Learning, Morgan Kaufmann, 1995.

	Course Title:
	Intelligent Web

	Course Code:
	IW

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Undergraduate course in Computer networks

Basic web programing

	Learning outcomes:

At the end of the course a student will be able to:

1. Understand principles of IW

2. Read and review research papers

3. Develop intelligent web projects based on the semantic web technologies

	Aims & Objectives:

This is an advanced course on IW The goals are to:

1. Introduce basic and advanced concepts on IW

2. Provide an understanding of technical details in IW
3. Provide students with experience on critical reading and reviewing of research papers in IW

4. Provide students with practical experience on IW

	Syllabus Contents (Main topics):

The course is focused on developing methods and techniques dealing with intelligent web technologies and methods:
Client-side of web application, Web accessibility and alternative user interfaces, application logic on client side

Server-side of web application, three-layer architecture of the web application, database access objects (DAO)

Separation of the presentation and business logic, Tools for rapid application development (RAD)

Web services, web service standards

Integration of web applications, collaboration on web

Quality of web applications, evaluation of hypermedia documents

Personalized web, adaptive hypermedia systems

Semantic web, ontology, semantic web standards

Information search in web, semantic search, web agents

Web applications security, security issues on the web.

Web as a tool of information society: communication, establishment of communities, e-learning, e-government, e-banking, e-commerce, art in web

	Assessment Procedure:

Students will be required to submit at least two reviews of papers on the reading list. Specific projects, inspired from studied papers, will be proposed and their implementation and evaluation required. Students will be required to submit a written research project plan, to review their progress with the instructor during the course and to submit the project at the end of the course. An oral presentation of the project results will also be required.

	Indicative Sources:

Research papers and material mainly from the Internet

Books:

1. Singh – Internet Computing, Chapman& Hall, 2006

2. David Tainar (ed), Web Semantics and Ontology, Idea Group Publishing, 2006

	Course Title:
	Neural Networks

	Course Code:
	NN

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Familiarity with the following is of great help:

Data structures;

Algorithm analysis;

Linear algebra and differential equations.

No prior knowledge of cognitive/biological/psychological sciences is presumed.

	Learning outcomes:

After this course, the student should be able to:

1. Understand the following things: i) Basic neuron models: McCulloch-Pitts model, nearest neighbor model, radial basis function model, etc. ii) Basic neural network models: multilayer perceptron, nearest neighbor based multilayer perceptron, associative memory, radial basis function based multilayer perceptron, etc. iii) Basic learning algorithms: the back propagation algorithm, self-organization learning, winner-take-all competitive learning, evolutionary learning, etc.

2. Describe the relation between real brains and simple artificial neural network models.

3. Explain and contrast the most common architectures and learning algorithms for Multi-Layer Perceptrons, Radial-Basis Function Networks, Committee Machines, and Kohonen Self-Organising Maps

4. Discuss the main factors involved in achieving good learning and generalization performance in neural network systems

5. Identify the main implementational issues for common neural network systems

6. Evaluate the practical considerations in applying neural networks to real classification and regression problems

7. Analysis mathematical properties of some network models

	Aims & Objectives:

The goal of neural network research is to realize an artificial intelligent system using the human brain as the model. This course will cover both theoretical and practical aspects of NN. This course offers, with considerable breadth and depth, an introduction to neural networks (NN), a new approach for modelling, formulating, and solving problems. Networks of neuron-like units and extensive inter-unit connections have shown impressive performance in applications in various fields such as pattern analysis, nonlinear control, combinatorial optimization, and knowledge acquisition.

This module provides an introduction to basic neurobiology, discusses the main neural network architectures and learning algorithms, presents a number of neural network applications and investigates the principal neural network models and applications include McCulloch Pitts Neurons, Single Layer Perceptrons, Multi-Layer Perceptrons, Radial Basis Function Networks, Committee Machines, Kohonen Self-Organising Maps, and Learning Vector Quantization.

	Syllabus Contents (Main topics):

This course will cover both theoretical and practical aspects of NN. Topics to be covered by this course include

Introduction to Neural Networks and their History. Biological Neurons and Neural Networks. Artificial Neurons.

Basics of neural network computing, in contrast to algorithmic approaches, traditional AI problem solving, and Von Neumann architecture.

Important neural network models, such as Adaline and Perceptron; feedforward and feedback networks; recurrent networks, self-organizing networks (Kohonen's model and the ART models of Grossberg); and thermodynamic networks (Hopfield model, Boltzmann/Gauss/Cauchy machines).

Learning methods, such as Hebbian learning, Perceptron learning theorem, back-propagation, learning, unsupervised competitive learning. Learning with Momentum. Conjugate Gradient Learning. Bias and Variance. Under-Fitting and Over-Fitting. Improving Generalization.

Applications of Multi-Layer Perceptrons. Radial Basis Function Networks: Introduction. Radial Basis Function Networks: Algorithms. Radial Basis Function Networks: Applications. Committee Machines. Self Organizing Maps: Fundamentals. Self Organizing Maps: Algorithms and Applications. Learning Vector Quantisation. Overview of More Advanced Topics.

	Assessment Procedure:

60% of the final mark is from an exam. 40% is from practical exercises, reports, and presentations. In place of some of the exercises, students undertake a literature survey of an area relevant to the course topics.

	Indicative Sources:

Books:

1. An Introduction to Neural Networks, K Gurney, Routledge, 1997

2. The Essence of Neural Networks, R Callan, Prentice Hall Europe, 1999

3. Principles of Neurocomputing for Science and Engineering, F M Ham & I Kostanic, McGraw Hill, 2001

	Course Title:
	Theorem Proving

	Course Code:
	THP

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Mathematical maturity, familiarity with mathematical logic, predicate calculus
Students will be assumed to have been exposed to basic logics and formal encodings of problems concepts in previous courses.

	Learning outcomes:

Having completed the course, the students should be able to:

1. Understand what is theorem proving?

2. Make research in automatic theorem proving

3. Learn how to go about solving a problem with a theorem prover.

4. Learn how a given problem can be encoded in formal logic.

5. Learn about various theorem provers and various theorem-proving and program-analysis techniques.

6. Deduce what theorem provers, theorem-proving techniques, or program-analysis techniques would be a good match for a given problem.

7. Understand the syntax and semantics of classical propositional and predicate/first-order logic as well as clause logic.

8. Understand of the main ingredients of resolution calculi and be able to use them (transformation into clause form, inference rules, unification, orderings, selection)

9. Use the general concept of redundancy and use it to justify different ways of simplifying and reducing the search space of theorem proving processes (tautology deletion, subsumption deletion, purity deletion, reduction).

10. Use the calculi covered in the course (resolution calculi, semantic tableau, free-variable tableau) for constructing proofs.

	Aims & Objectives:

The course gives an introduction to theoretical concepts and results that form the basis of current state-of-the-art theorem provers (and other theorem proving tools). It develops understanding of the basic techniques used in theorem provers. This course looks at recent novel uses of theorem provers in the research literature, and tries to understand the key insights that made them succeed. It allows various theorem-proving and program-analysis techniques, focusing on comparing them to one another, and understanding how their limitations affect their applicability.

	Syllabus Contents (Main topics):

The course covers:

Methods of theorem proving that can be programmed on a computer.
Theorem proving in program verification, proof checking, and artificial intelligence.

Symbolic Logic and Mechanical Theorem Proving.

Methods of theorem proving for the propositional calculus, natural deduction and resolution based methods for the first order predicate calculus, specialized methods based on term rewriting systems for theorems involving equality, and specialized methods for Presburger arithmetic and other such theories.
Interesting and novel uses of theorem provers, automated deduction techniques, or program analysis techniques.
Logics and formal encodings of problems.

Basic search strategies: searching in the proof space domain ; searching in the semantic domain ; tactics and tacticals. Handling various aspects of first-order logic automatically : quantifiers; equality; ecursion.

Decidability and decision procedures: decidable subsets of first-order logic; communication between decision procedures; communication between the theorem prover and decision procedures.

Introduce the existing model checkers, such as Isabelle/HOL, MONA, Coq. Introduce case study of formal verification by theorem prover on security models and software.

	Assessment Procedure:

60% of the final mark is from an exam. 40% is from practical exercises, reports, and presentations. In place of some of the exercises, students undertake a literature survey of an area relevant to the course topics.

	Indicative Sources:

Books:

1. Automated Theorem Proving: Theory and Practice, M. Newborn, Springer-Verlag, 2001

2. Logic for Computer Science: Foundations of Automatic Theorem Proving, J.H. Gallier, John Wiley & Sons, 1987

3. The Resolution Calculus, Alexander Leitsch, Springer-Verlag, 1997

	Course Title:
	Expert Systems

	Course Code:
	ES

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Undergraduate-level courses in calculus, linear algebra, probability and statistics, and artificial intelligence

Mathematical maturity, familiarity with mathematical logic, predicate calculus
Proficient with programming in at least one language is required. Practical and Professional Issues in Computer Science, Design of Algorithms, Foundations of Computer Science, Artificial Intelligence.

	Learning outcomes:

Having completed this course, students will have learned

1. Introduction to artificial intelligence.

2. Expert system (ES), definition, benefits, applications;

3. Knowledge and offering methods of knowledge;

4. Information engineering;

5. Basic structure of expert systems;

6. Projecting methods of expert systems and examples related with it;

7. Bayes method, fuzzy logic, expert systems with artificial neural networks methods, projected expert system examples, expert system (ES) applications in various areas.

	Aims & Objectives:

1. Understanding of ES,

2. Uses of ES,

3. Understanding of knowledge representations, understanding of projecting methods of ES,

4. Design of simple ES,

5. Hybrid ES

	Syllabus Contents (Main topics):

Overview of Expert Systems, feature extraction

Place of ES in AI;

Advantages and disadvantages of ES

Knowledge engineering

Structure of an ES

Methods of the design of ES

Hybrid ES.

	Assessment Procedure:

60% of the final grade is from the term project. 40% of the final grade is from the answers of homeworks.

	Indicative Sources:

Books:

1. Waterman D.A. A Guide to Experts Systems, Addison-Wesley, 1986.

2. Townsend C., Feucht D. Designing and Programming Personal Expert Systems, Tab Books, 1986.

3. Alty J.L., Coombs M.J. Expert Systems. Concepts and Examples, Ncc Publ., 1984.

4. Darlington K. The Essence of Expert Systems, Prentice-Hall, 2000, 167 p.

5. Giarrantano J.C., Riley G. Expert Systems: Principles and Programming, 3rd ed., PWS Publishing Company, 1998, 547 p.

6. Jackson P. Introduction to Expert Systems, Addison-Wesley, 1990.

7. Levine R.I., Drang D.E., Edelson B. A Comprehensive Guide to AI and Expert Systems, McGraw-Hill, 1986.

8. Lucas P., Van Der Gaag L. Principles of Expert Systems, Addison-Wisley, 1991.

9. Martin J., Oxman S. Building Expert Systems. A Tutorial, Prentice Hall, 1988.

10. Mital A. Handbook of Expert Systems Applications in Manufacturing Structures and Rules, Chapman Hall, 1994.

	Course Title:
	Biocomputing

	Course Code:
	BC

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Courses in Computational Biology and/or Biodata Analysis

	Learning outcomes:

On completion of this course, the students should be able to:

1. Appreciate the role of scientific computation

2. Acquire facility in basic techniques

3. Inderstand how these apply to modelling biological problems

4. Analyze case studies (e.g. techniques for Microarray data analysis)

	Aims & Objectives:

To build upon foundation courses, particularly in BioData Analysis, Computational Biology and Databases to provide an overview of the dynamic behaviour of a wide range of biological systems. Computational techniques in general include simulation, classification, database construction and analysis, together with parallel computation and this course aims to provide further building blocks. Linkage of statistical and heuristic techniques with efficient algorithm development to find new ways to solve problems of biological interest is dealt with in overview

	Syllabus Contents (Main topics):

Short course on the mathematical and statistical techniques underpinning Microarray Data Analysis - Overview of Scientific Computation- Strategy, Approximation, Computer Arithmetic and Software Solutions, Type of Problem - nonlinearity of natural phenomena - Database for Bioinformatics - Differential Equation Models - Examples. Limits to growth, Steady states, Drug Infusion, Modelling Infectious diseases, Cell Differentiation. - Computer Simulation techniques an overview, Cellular Automata, Monte Carlo, Smart Monte Carlo, MCMC, Molecular Dynamics and Extensions. Examples - as above, Population dynamics and Immune response. - Non-linear Programming principles in brief- Evolutionary Computation vs GA, NN - Tools for Bioinformatics; Web-based - Search engines, data annotation and formats, - Genbank, FASTA, PDB - Analysis options - sequences, pairwise alignment - examples such as phylogenetic trees -Visualization of proteins structures and computing structural properties - RasMol, Swiss PDB, MolMol, MolScript and others. -Prediction and computational modelling. Tools for Genomics and Proteomics - basecalling, shotgun, clone counting and tracking Functional Genomics - current and emerging technologies - e.g. "D-page methods, SWISS-PROT and TrEMBL

	Assessment Procedure:

50% Wriiten Exam, 50% Projects

	Indicative Sources:

Books:

1. Bioinformatics Computing Bergeron B. 2002, Prentice-Hall Papers, Jong, Page, Hernandez et al.

2. Developing Bioinformatics Computer Skills. Gibas G. and Jambeck P. 2001 O'Reilly and Associates

3. Evolutionary Computation in Bioinformatics. Fogel G.B., Corne D. W. (Eds.) 2002, Kaufmann

4. Computational Molecular Biology Clote P. and Backofen R. 2000 (Wiley)

5. Numerical Recipes (in C) - the Art of Scientific Computing, Teukelesky et al. CUP

6. DNA Microarrays and Gene Expression by Baldi and Hatfield, CUP 2002

	Course Title:
	Genetic Algorithms

	Course Code:
	GA

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Undergraduate introductory courses in

AI

Maths Statistics and Probability

	Learning outcomes:

This course offers knowledge about the class of evolutionary methods used in solving computer science problems. This includes
1. Genetic algorithms;

2. Evolutionary strategies;

3. Genetic programming;

4. Problem representations;

5. Genetic operations;

6. Theory of evolutionary algorithms.

Various approaches and applications of evolutionary computation to combinatorial optimization problems are introduced

	Aims & Objectives:

Evolutionary computation provides approximate solutions tp various scientific and engineering problems in polynomial time. Class of such problems include combinatorial optimisation problems, problems in artificial intelligence and machine learning. This course offers in depth knowledge about which evolutionary methods exists, which problems they can be applied, and how successful they are.

	Syllabus Contents (Main topics):

Natural evolution

Evolutionary algorithms basics

Evolutionary search techniques

Genetic algorithms, operators, selection and parameters

Combinatorial optimization problems and genetic algorithms, representations

Theoretical foundations, convergence and design considerations

Genetic programming

Parallel genetic algorithms

	Assessment Procedure:

60% Exam, 40% Assignments

	Indicative Sources:

Books:

1. Melanie Mithcell, "An Introduction to Genetic Algorithms (Complex Adaptive Systems)", MIT Press, 1998

2. Zbigniew Michalewics, "Genetic Algorithms + Data Structures = Evolution Programs", Springer Verlag, 1997.

3. Ed. Bäck, Fogel and Michalewicz, "Evolutionary Computation1: Basic Algorithms and Operators", 2000

	Course Title:
	Evolutionary Programming

	Course Code:
	EP

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

Programming Languages

Algorithms and Data Structures

	Learning outcomes:

On completion of this course the students should be able to:

1. Understand the relations between the most important evolutionary algorithms presented in the course, new algorithms to be found in the literature now or in the future, and other search and optimisation techniques.

2. Understand the implementation issues of evolutionary algorithms.

3. Determine the appropriate parameter settings to make different evolutionary algorithms work well.

4. Design new evolutionary operators, representations and fitness functions for specific practical and scientific applications

	Aims & Objectives:

Introduce the main concepts, techniques and applications in the field of evolutionary computation.

Give students some practical experience on when evolutionary computation techniques are useful, how to use them in practice and how to implement them with different programming languages.

	Syllabus Contents (Main topics):

Introduction to Evolutionary Computation

Search Operators

Selection Schemes

Search Operators and Representations

Evolutionary Combinatorial Optimisation

Co-evolution

Niching and Speciation

Constraint Handling

Genetic Programming

Multiobjective Evolutionary Optimisation

Learning Classifier Systems

Theoretical Analysis of Evolutionary Algorithms

	Assessment Procedure:

100% Exam

	Indicative Sources:

Books:

1. Handbook on Evolutionary Computation
 T. Baeck, D. B. Fogel, and Z. Michalewicz (eds.) IOP Press, 1997.

2. Genetic Algorithms + Data Structures = Evolution Programs (3rd edition) Z Michalewicz, Springer-Verlag, Berlin, 1996

3. Genetic Programming: An Introduction, W Banzhaf, P Nordin, R E Keller & Frank D Francone, Morgan Kaufmann, 1999

4. Evolutionary Computation: Theory and Applications, X. Yao (ed), World Scientific Publ. Co., Singapore, 1999. (ISBN 3-540-65907-2)

	Course Title:
	Fuzzy Logic and Fuzzy Control

	Course Code:
	FLFC

	Course Status:
	Specific - Area 6 Computational Intelligence (Artificial Intelligence)

	Recommended prior study:

It is assumed that students have general knowledge in

Discrete maths and logic;

Signals and systems;

Linear control theory;

A high-level programming language (MATLAB, C, C++, Java).

	Learning outcomes:

On successful completion of this course, students should be able to

1. Summarise the mathematical foundations of fuzzy logic

2. Understand basic knowledge of fuzzy sets and fuzzy logic

3. Apply basic fuzzy inference and approximate reasoning

4. Apply techniques for building fuzzy systems

5. Apply basic fuzzy PID control systems

6. Apply basic fuzzy system modelling methods

7. Understand the basic notion of computational verb controllers
8. Construct models using a fuzzy logic software package

9. And more

	Aims & Objectives:

Fuzzy logic is a design method that can be effectively applied to problems that, because of complex, nonlinear, or ambiguous system models, cannot be easily solved using traditional analytical control techniques. This course presents some basic concepts of fuzzy set theory, fuzzy logic operations, fuzzification and de-fuzzification and types of applications for which fuzzy control is useful. It gives several practical applications and several comparisons of conventional and advanced control methods. The aim is to equip graduate students with some state-of-the-art of fuzzy set theory and its applications.

	Syllabus Contents (Main topics):

This course covers:

Fundamentals of fuzzy logic

Introduction to fuzzy sets, fuzzy inference, fuzzy rule base, intelligent decision-making, fuzzy modelling and fuzzy control systems

Process control using fuzzy logic

Decision-making fuzzy systems

Fuzzy pattern recognition systems

Neuro-fuzzy systems and evolutionary learning in fuzzy systems

Design of fuzzy control systems

Fuzzy logic of rule-based systems

Types of fuzzy controllers : rule-based, PI-type, supervisory, and adaptive controllers

Development of hardware implementations and the role of fuzzy logic in intelligent control

Building blocks of fuzzy systems (fuzzification by membership functions (MF); MF features, core, support, boundaries; MF types, triangular, trapezoidal, gaussian; MF assignment, intuition, inference, rank ordering; fuzzy inference - fuzzy logic, tautology, contradiction, equivalence, approximate reasoning; defuzzification, lambda cauts on fuzzy sets and relations, maximum, centroid, weighted average).

Applications of fuzzy logic and systems (fuzzy rule bases, canonical forms, decomposition, aggregation; fuzzy modelling - interactions analysis, regression, training data sets; fuzzy simulation - partitioning, associative memories, relational equations, testing data sets; fuzzy control, stability analysis, optimisation, rule base decoupling, design).

	Assessment Procedure:

The overall assessment strategy will be to give students the opportunity to demonstrate their understanding of the theoretical concepts and the available techniques for applying the concepts

60% of the final mark is from an exam. 40% is from practical exercises, reports, and presentations. In place of some of the exercises, students undertake a literature survey of an area relevant to the course topics.

	Indicative Sources:

Books:

1. Fuzzy Control, Kevin M. Passino and Stephen Yurkovich, Addison Wesley Longman, Menlo Park, CA, 1998 (later published by Prentice-Hall).

2. Fuzzy Logic: a Practical Approach, McNeill, Martin and Ellen Thro., 1994 Academic Press Professional.

3. Introduction to Fuzzy Systems, G. Chen and T. T. Pham, , CRC Press, 2006

