Bachelors

in

Software Engineering

Syllabi

Course Title:
Mathematics 1

Course Code:
MA1

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:

Learning outcomes:

After this course the students will understand the most fundamental mathematical concepts of linear algebra and first course calculus. Then they will be able to use some modern system of computer algebra.

Aims & Objectives:

The aims of this course are:

1. to give basic knowledge in the field of linear algebra and single variable calculus;

2. to ensure a good foundation for further studying of various mathematical courses.
Syllabus Contents (Main topics):

Complex numbers and polynomials

Matrices, determinants

Systems of linear algebraic equations

Limits of functions

Differential calculus of single variable functions

Basic integration methods

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Apostol T.M., Calculus (one variable calculus, with an introduction to linear algebra), John Wiley & Sons, (1967).

2. Mathematics, Pre-Calculus and introduction to Probability, Published by Naval Education and Training Professional Develop​ment and Technology Center, 1988.

3. Stroyan K.D., Mathematical background: Foundations of infinitesimal calculus, Academic Press, 1997.

4. Swokowski E., J. Cole, D. Pence, M. Olinick, Calculus of a Single Variable, 1994.

5. Swokowski E., J. Cole, D. Pence, M. Olinick, Calculus of Several Variable, 1995.

URLs (Web sites):

Any site responding to the key words "calculus courses" and "lnear algebra courses".
Course Title:
Mathematics 2

Course Code:
MA2

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Mathematics 1

Learning outcomes:

After this course the students will understand and utilize some widely used classical principles of applied mathematics

Aims & Objectives:

The aims of this course are:

1. to give knowledge in many aspects in the field of single variable calculus and its straightforward application;

2. to provide a basis for further studying of stochastic methods.
Syllabus Contents (Main topics):

Definite integral and applications

Differential equations

Function of complex variables, Fourier series

Numerical methods

Theory of probability

Mathematical statistics

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Apostol T.M., Calculus (multi variable calculus and linear algebra, with applications to differential equations and probability), John Wiley & Sons, 1969.

2. Grinstead C., J. Snell, Introduction to probability, 1996.

3. Swokowski E., J. Cole, D. Pence, M. Olinick, Calculus of Several Variable, 1995.

4. Sean Mauch, Introduction to method of applied mathematics – advanced mathematical methods for scientists and engineers, 2002.

URLs (Web sites):

Any site responding to the key words "calculus courses", "lnear algebra courses", "differential equations courses", "Fourier series courses", "probability courses", numerical methods courses.

Course Title:
Introduction to Programming

Course Code:
IPR

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:

Learning outcomes:

On completing this course, the students will

1. have good understanding of data structures and programming constructs in procedural and Assembly languages;

2. be able to design and code simple to intermediate problems.

Aims & Objectives:

The aims of this course are:

1. to introduce the students to programming in a high-level and Assembly language;

2. to study the main data structures;

3. to build skills to develop algorithms and computer programs with intermediate complexity.

Syllabus Contents (Main topics):

Basic data types

Fundamental programming constructs

Fundamental data structures

Files

Assembly level machine organisation

Programming in Assembly language

Inspection and testing in the procedural paradigm

Teaching and Learning Methods:

The lectures clarify the theoretical part of the topics and give many examples. This gives the students the opportunity to prepare for workshops in advance and to work independently.

The workshops are conducted in computer labs. There the students work on developing and debugging programs.
Assessment Procedure:

Written exam, requiring that the students develop programs and answer theoretical questions. The problems consist of numerous items with increasing difficulty.
Indicative Sources:

Books:

1. Abel P., IBM PC Assembly Language and Programming (5th Edition), Prentice Hall, 5th edition, 2001, ISBN: 013030655X .

2. Burd B.A., Pascal by Example from Practice to Principle in Computer Science, International Thomson Publishing, 1992, ISBN: 0155681621.

3. Knuth D.E., The Art of Computer Programming, Volume 1: Fundamental Algorithms, Addison-Wesley, 1997.

4. Irvine K.P., Assembly Language for Intel-Based Computers (4th Edition), Prentice Hall, 4th edition, 2002, ISBN: 0130910139.

5. Wirth N., Algorithms + Data Structures = Programs, Prentice Hall, 1985.

Course Title:
Discrete Structures

Course Code:
DS

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Mathematics 2, Introduction to Programming
Learning outcomes:

After this course the students will know the main abstract mathematical theories and will understand different discrete structures used in computer science.

Aims & Objectives:

The aim of the course is to present a survey of different discrete structures used in the computer area for abstract presentation, design and optimization of computer processes and structures. The students must know the basic discrete math tools and use them in their future work.

Syllabus Contents (Main topics):

Functions, relations and sets

Basic logic

Boolean algebra and functions

Graphs and trees

Discrete probability

Petri nets

Automata theory

Digital logic and digital systems

Teaching and Learning Methods:

Lectures (with slides/multimedia projector);

Web site of the course and additional electronic materials;

Seminars and software environment for e-learning.

Assessment Procedure:

Written exam.

Indicative Sources:

Books:

1. Clote, P., E. Kranakis. Boolean Functions and Computation Models. Springer-Verlag, 2001.

2. Grimaldi, Ralph. Discrete and Combinatorial Mathematics (3rd ed.), Addison-Wesley, 1993.

3. Maurer, St., A. Ralston. Discrete Algorithmic Mathematics, Addison-Wesley, 1991.

4. Reeves, St., M. Clarke. Logic in Computer Science, Addison-Wesley, 1990.

5. Ross, K.A., Discrete Mathematics (4/e), Prentice Hall, 1999.

6. Truss, J. Discrete Mathematics for Computer Scientists. Addison-Wesley, 1991.

Course Title:
Professional Skills in Software Engineering

Course Code:
PS

ECTS credits:
6

Course Status:
Core/elective

Prerequisites:
Introduction to Programming

Learning outcomes:

On completion of this course the students should be able to:

1. manage their own learning and study effectively;
2. collect information from appropriate sources both within and outside the university;
3. use basic IT facilities;
4. present and analyse data in an appropriate fashion;
5. communicate effectively in writing for various purposes;
6. prepare a curriculum vitae;
7. give a satisfactory oral presentation;
8. work effectively as part of a team to produce and present a poster.
Aims & Objectives:

The aims of this course are:

1. to develop the student as an effective, self-motivated learner by teaching a range of key skills and by providing opportunity for academic guidance and counselling;

2. to provide a foundation for study at higher levels and for subsequent careers.

Syllabus Contents (Main topics):

Working with office applications

Consumer behaviour

History of computing

Social context of computing

Methods and tools of analysis

Language, communication, interaction

Privacy and civil liberties

Working on a design team

Definitions of testing

Test selection criteria

Managing the test process

Teaching and Learning Methods:

The lectures will be used to introduce topics and to provide the theoretical framework. These are further developed in workshops by introducing case studies. Teaching will be done in a series of tutorial sessions in small groups with a personal tutor. There will be substantial directed study.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Buzan T, Use your head, BBC books, London, (1989).

2. Eggert M, The Perfect CV, Arrow Business Books, (1992).

3. Ludlow R., The Essence of Effective Communication, Prentice Hall, (1992).

4. Northedge A., The Good Study Guide, OUP, (1990).

5. Pentz M & Shott M, Handling Experimental Data, OUP, (1988).

Course Title:
Introduction to Management

Course Code:
IM

ECTS credits:
6

Course Status:
Core/elective

Prerequisites:
Professional Skills in Software Engineering, Legal Aspects of Software Development
Learning outcomes:

Upon completion of this course, students should be able to:

1. understand the dynamic nature of the manager’s role;

2. explain the nature and importance of effective management in organisational success;

3. organise and express information and ideas into a reasoned argument;

4. analyse modern developments in approaches to marketing and critically discuss the impact of these developments;

5. select and apply a range of marketing tools in the creation of a marketing campaign.

Aims & Objectives:

The aims of this course are:

1. to provide a basic understanding of the roles, functions and activities of managers within organisations;

2. to introduce to theories of management and their application in a range of emerging organisational forms;

3. to demonstrate knowledge of fundamental theories relating to the practice of management;

4. to explore the effective and adaptable role of marketing in dynamic and changing business environments.

Syllabus Contents (Main topics):

Market mechanism

Public sector and tax system

Consumer behaviour

Production, expenses and income of a firm

Price-forming of manufacturing factors

Economic cycle
Company information systems

Marketing systems

Investment and crediting systems

Finance and accountancy systems

Teaching and Learning Methods:

Key issues and topics will be introduced by lectures and visiting speakers. Tutorial activities and discussion will be used to enable the student to relate issues and topics to realistic or topical situations. Case study and analysis techniques will be developed.

Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Boddy D., R. Paton, Management: an introduction, Pearson Education (1998).

2. Deakins D., M. Freel, Entrepreneurship and Small Firms, McGraw-Hill (1999).

3. Handy C.B., Understanding organizations, Penguin Books Ltd. (1993).

4. Jobber D., Principles and Practices of Marketing, McGraw-Hill (2001).

Course Title:
Introduction to Software Engineering

Course Code:
ISE

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:
Introduction to Programming, Professional Skills in Software Engineering,
Introduction to Management, Algorithms & Data Structures

Learning outcomes:

Upon completion of this course, students should be able to:

1. identify and discuss the technical and engineering activities of producing a software product;

2. describe issues, principles, methods and technology associated with software engineering theory and practices;

3. work as a part of a team, use a software development process to develop a software product.

Aims & Objectives:

The aims of this course are:

1. to provide an overview of software engineering as a discipline;

2. to explain the software life cycle and its phases including the deliverables that are produced;

3. to select, with justification of the software development models, the most appropriate for the development and maintenance of a diverse range of software products;

4. to explain the role of process maturity models;

5. to cover basic knowledge about software requirements, software design, software construction, software management and software quality;

6. to compare the traditional waterfall model to the incremental model, the object-oriented model and other appropriate models.

Syllabus Contents (Main topics):

Software life-cycle models

Software design strategies and methods

Introduction to structured analysis and top-down design

Introduction to object-oriented analysis and design

Key issues in software design

Key issues in software maintenance

Working on a design team

Software structure and architecture

Software quality concepts

Human-centred software development

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of software systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Humphrey W.S., Introduction to the Team Software Process, Massachusetts: Addison-Wesley, (1999).

2. ISO/IEC 12207:1995, Information Technology – Software life cycle processes.

3. IEEE Std. 829 – 1998, IEEE Standard for Software Test Documentation.

4. Koomen T., M. Pol, Test process improvement: a practical step-by-step guide to structured testing, Addison-Wesley, (1999).

5. Laarman C., Applying UML and Patterns, Prentice Hall, (2001).

6. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

7. Perry W., Effective Methods of Software Testing, John Wiley & Sons, Inc., (2000).

8. Pfleeger S., Software Engineering: Theory and Practice, New Jersey: Prentice Hall, (1998).

9. Pressman R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, (1997).

URLs (Web sites)

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
http://www.cs.brown.edu/courses/cs032/resources.htm
http://mingo.info-science.uiowa.edu/soft-eng/
Course Title:
Algorithms and Data Structures

Course Code:
ADS

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Introduction to Programming, Discrete Structures
Learning outcomes:

After this course the students will know linear, non-linear structures and recursion, algorithmic analysis and strategies.

Aims & Objectives:

The aims of this course are:

1. to give the students deep understanding of different kinds of data structures;

2. to evaluate algorithm’s asymptotic complexity, and their computation complexity.

Syllabus Contents (Main topics):

Algorithms and problem solving

Basic algorithmic analysis

Algorithmic strategies

Fundamental computing algorithms

Basic data structures

Abstract data types

Advanced non-linear structures

Teaching and Learning Methods:

Lectures (with slides, multimedia projector) and additional text materials; web site of the course; workshops (based on instructions) with a tutorial for every workshop topic.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. McHugh, J.A. Algorithmic graph theory. Prentice Hall, Englewood Cliffs, NJ, 1990.

2. Michael Schneider, Steven C. Bruel. Concepts in Data Structures & Software Development. West Publishing Company, N.Y., 1991.

3. Weliss, M.A. Data Structures and Algorithms Analysis. The Benjamin/ Cumming Publishing Company, 1995,

URLs (Web sites):

www.pearsoneduc.com
Course Title:
Programming Languages

Course Code:
PL

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Introduction to Programming, Algorithms and Data Structures

Learning outcomes:

On completing this course, the students will

1. be able to design and code complex problems;

2. be able to freely use the C/C++ programming language.

Aims & Objectives:

1. Systemise students’ knowledge in the field of programming languages by a classification and comparative analysis of the latter.

2. Extend the students' skills for programming in a procedural language.

Syllabus Contents (Main topics):

Overview of programming languages

Basic data types

Fundamental programming constructs

Basic data structures

Files

Recursion

Inspection and testing in the procedural paradigm

Advanced programming constructs

Object-oriented programming

Event-driven programming

Non-procedural languages

Database query languages

Teaching and Learning Methods:

The lectures provide the theoretical basis. The workshops involve every student in actual design, coding and testing of short but complete problems.

Assessment Procedure:

Written test, including problems in different languages and different levels of difficulty.

Indicative Sources:

Books:

1. Ghezzi C., M. Jazayeri, Programming Language Concpets, in English, 427 pages, John Wiley & Sons, June 1997, 3rd edition, ISBN: 0471104264

2. Knuth D.E., The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition, Addison-Wesley, 1997

3. Knuth D.E.,The Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition, Addison-Wesley, 1998

4. Kernighan B.W., R. Pike,The Practice of Programming, Addison-Wesley, 1999

5. Stroustrup B.,The C++ Programming Language, Addison-Wesley, 2nd edition, 1991

URLs (Web sites):

http://directory.google.com/Top/Computers/Programming/
http://safari.informit.com/
Course Title:
Object-Oriented Programming

Course Code:
OOP

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Introduction to Programming, Discrete Structures,

Algorithms and Data Structures, Programming Languages

Learning outcomes:

On completion of this course the students should be able to:

1. design, implement, test and debug simple programs in an object-oriented programming language;

2. design, implement, and test the implementation of “is-a” relationships among objects using a class hierarchy and inheritance.

Aims & Objectives:

The aims of this course are:

1. to introduce students to fundamental concepts and techniques used in the object-oriented programming;

2. to justify the philosophy of object-oriented design and concepts of encapsulation, abstraction, inheritance and polymorphism;

3. to describe how the class mechanism supports encapsulation and information hiding;

4. to compare and contrast the notions of overloading and overriding methods in an object-oriented language;

5. to analyse several object-oriented languages (included C++ and Java).

Syllabus Contents (Main topics):

Object-oriented programming

· Encapsulation and information-hiding

· Separation of behaviour and implementation

· Classes and subclasses

· Inheritance

· Polymorphism

· Class hierarchies

· Collection classes and iteration protocols

Abstract data types

Recursion

Advanced non-linear structures

Type of reuse

Inspection and testing in the object-oriented paradigm

Event-driven programming

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lectures will be used to introduce topics and to provide the theoretical framework. These are further developed in workshops by introducing case studies. Workshops will provide the opportunity for students to practise the object-oriented techniques. The students have to independently solve, encode and test with the aid of a specific programming environment elements of given problems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Booch G., Object-oriented design with applications, Addison-Wesley, (1991).

2. Muller P., Introduction to Object-Oriented Programming using C++, Globewide Network Academy, (1997).

3. Stroustrup B., The C++ programming language, Addison-Wesley, (1991).

4. Wiener R., L. Pinson, The C++ Workbook, Addison-Wesley, (1992).

5. William F., T. William, Data structures with C++, Prentice Hall, (1996).

URLs (Web sites)

http://java.sun.com/docs/books/tutorial/java/concepts/
http://www.desy.de/gna/html/cc/Tutorial/tutorial.html
http://www.ira.uka.de/bibliography/Object/
http://www.quiver.freeserve.co.uk/OOP1.htm
http://hobbes.jct.ac.il/~naiman/c++-oop/
http://cs.colgate.edu/faculty/nevison.pub/oop.html
Course Title:
Software Requirements

Course Code:
SWR

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Professional Skills in Software Engineering, Introduction to Software Engineering, Programming Languages, Object-Oriented Programming

Learning outcomes:

Upon completion of this course, students should be able to:

1. describe the role of requirements engineering within the software life cycle;

2. describe, compare and contrast, and evaluate structured, object-oriented, data-oriented, and formal approaches to requirements modelling;

3. gather the requirements necessary to develop the specifications, given a “customer” who wants a software system to be developed;

4. model, prototype, and specify requirements for a software system;

5. review and inspect software requirements;

6. translate into natural language a software requirements specification written in a commonly used formal specification language.

Aims & Objectives:

The aims of this course are:

1. to introduce basic concepts and principles of software requirements engineering;

2. to present basic tools and techniques of software requirements engineering;

3. to describe general methods for modelling software systems;

4. to examine various approaches to requirements analysis;

5. to explain the role of process maturity models;

6. to compare the structured, object-oriented model and other appropriate models.

Syllabus Contents (Main topics):

Requirement engineering process

Requirements elicitation

Requirements analysis

Requirements specification

Requirements validation

Working on a design team

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of software systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Davis A., Software Requirements: Objects, Functions & States, New Jersey: Prentice Hall, (1993).

2. Dorfman M., R. Thayer, A. Davis, Software Requirements Engineering, IEEE Computer Society Press, (1997).

3. Humphrey W.S., Introduction to the Team Software Process, Massachusetts: Addison-Wesley, (1999).

4. Koomen T., M. Pol, Test process improvement: a practical step-by-step guide to structured testing, Addison-Wesley, (1999).

5. Laarman C., Applying UML and Patterns, Prentice Hall, (2001).

6. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

URLs (Web sites)

www.firstmerit.com/requirements.html
www.manning.com/kovitz
www.sei.cmu.edu/products/videos/sw.req.eng.for.prac.html
www.analysttool.com
www.tuffley.aust.com/tcs2001.thm
www.jstor.org/about/equip.html
msdn.microsoft.com/library/en-us/cdo/html/
www.spc.ca/resources/requirements/
www.ics.hawaii.edu/~johnson/413/lectures/5.2.html
Course Title:
Software Design

Course Code:
SWD

ECTS credits:
9

Course Status:
Core/elective

Prerequisites:
Professional Skills in Software Engineering

Introduction to Management, Introduction to Software Engineering

Programming Languages, Object-Oriented Programming

Software Requirements

Learning outcomes:

Upon completion of this course, students should be able to:

1. perform an object-oriented architectural design in a team;

2. perform a partial design and prototyping in one or more iterations;

3. develop a detailed design, given a preliminary design document;

4. code a design in a particular language, given a detailed design;

5. prototype a user interface, given a set of interface requirements.

Aims & Objectives:

The aims of this course are:

1. to discuss the properties of good software design;

2. to compare and contrast object-oriented analysis and design with structured analysis and design;

3. to evaluate the quality of multiple software design based on key design principles and concepts;

4. to select and apply appropriate design patterns in the construction of a software application;

5. to conduct a software design review using appropriate guidelines;

6. to evaluate a software design at the component level.

Syllabus Contents (Main topics):

Key issues in software design

Component definition

Interface specification

Protocol specification

Reference model

Software structure and architecture

Architectural styles (macroarchitecture)

Object-oriented architectural design

Design prototyping

Software engineering tools

Prototyping user interfaces

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of software systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Booch G., Object-Oriented Analysis and Design with Applications, California: Benjamin/Cummings, (1994).

2. Jacobson I. et. al., Object-Oriented Software Engineering: A Use-Case Driven Approach, Addison Wesley, (1992).

3. Laarman C., Applying UML and Patterns, Prentice Hall, (2001).

4. Lee R.C., W.M. Tepfenhart, UML and C++: A Practical Guide to Object-Oriented Development, New Jersey: Prentice Hall, (2001).

5. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

6. Shaw M., D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, New Jersey: Prentice Hall, (1996).

URLs (Web sites)

www.argosoft.com
hci.stanford.edu/asd
www.sdm.de
sdg.lcs.mit.edu
www.Kapor.com/homepages/mkapor/Software_Design_Manifesto.html
www.plasmatech.com/
www.dcsoft.com/
www.insoftdesign.com/
www.bswd.com/
Course Title:
Software Quality

Course Code:
SWQ

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Professional Skills in Software Engineering,

Introduction to Software Engineering, Programming Languages,

Object-Oriented Programming, Software Requirements

Learning outcomes:

Upon completion of this course, students should be able to:

1. understand the role and importance of software quality assurance in a software project;

2. develop a quality assurance plan;

3. develop a configuration management plan;

4. perform reviews, inspections and audits.

Aims & Objectives:

The aims of this course are:

1. to discuss quality management concepts;

2. to compare various types of software quality management;

3. to overview the IEEE quality standards;

4. to describe the role and importance of configuration management in a software project;

5. to define software quality criteria and metrics;

6. to describe the role that tools can play in the software quality management.

Syllabus Contents (Main topics):

Software quality assurance

Software quality metrics

Activities and techniques for software quality

Activities and techniques for verification and validation

Testability

Managing the test process

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about software quality management.
Assessment Procedure

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. ISO/IEC 12207:1995, Information Technology – Software life cycle processes.

2. IEEE Std. 829 – 1998, IEEE Standard for Software Test Documentation.

3. Koomen T., M. Pol, Test process improvement: a practical step-by-step guide to structured testing, Addison-Wesley, (1999).

4. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

5. Paulk M., C. Weber, B. Curtis, M. Chrissis, The Capability Maturity Model: Gudelines for Improving the Software Process, Addison-Wesley, (1995).

6. Perry W., Effective Methods of Software Testing, John Wiley & Sons, Inc., (2000).

7. Pressman R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, (1997).

8. Steve A., F. Patrinostro, Software Configuration Management, New York: McGraw-Hill, (1992).

URLs (Web sites)

www.swquality.com/users/pustaver/index.shtml
www.stqemagazine.com
www.asq.org/pub/sqp/
www.asq-software.org/
www.icsq.org/
www.utexas.edu/coe/sqi/
www.pnsqc.org/
www.softwarqatest.com/
www.sqi.gu.edu.au/
www.qaiusa.com/
www.sqi.utexas.edu/
Course Title:
Software Construction and Evolution

Course Code:
SWC

ECTS credits:
9

Course Status:
Core/elective

Prerequisites:
Professional Skills in Software Engineering,

Introduction to Software Engineering, Software Requirements,

Software Design, Software Quality

Learning outcomes:

Upon completion of this course, students should be able to:

1. use programming languages, software design knowledge and construction tools to implement a high-level design;

2. use and analyse an individual software process in constructing a software module or unit;

3. use software implementation tools to construct software;

4. describe and discuss maintenance processes and techniques.

Aims & Objectives:

The aims of this course are:

1. to identify the principal issues associated with software evolution;

2. to analyse the impact of the design and construction process on long-term software maintainability and evolution;

3. to discuss the challenges of maintaining legacy systems;

4. to discuss the need for reverse engineering;

5. to develop a plan for re-engineering a medium-sized product in response to a change request;

6. to discuss the advantages and disadvantages of software reuse.

Syllabus Contents (Main topics):

Key issues in software maintenance

Techniques for maintenance

Type of reuse

Re-engineering

Linguistic construction methods

Formal construction methods

Visual construction methods

Software configuration management

Software configuration identification

Software configuration control

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about software construction and evolution.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.

Indicative Sources:

Books:

1. Jacobson I. et. al., Object-Oriented Software Engineering: A Use-Case Driven Approach, Addison Wesley, (1992).

2. Lee R.C., W.M. Tepfenhart, UML and C++: A Practical Guide to Object-Oriented Development, New Jersey: Prentice Hall, (2001).

3. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

4. Meyer B., Object-oriented Software Construction, New Jersey: Prentice Hall, (1997).

5. Pigoski T.M., Practical Software Maintenance, New York: John Wiley & Sons, (1997).

6. Pressman R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, (1997).

7. Steve A., F. Patrinostro, Software Configuration Management, New York: McGraw-Hill, (1992).

8. Shaw M., D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, New Jersey: Prentice Hall, (1996).

URLs (Web sites)

www.ee.ualberta.ca/courses/ECE522.html
www.cs.rose-hulman.edu/curriculum/course-files/CSSE375.html
www.cs.ucsd.edu/users/wgg/swevolution.html
www.computer.org/certification/guide/McConnell_Construction.htm
cse.unl.edu/~scotth/papaers/seke97.html
www.rose-hulmaledu/class/cs490-const-and-evol/
Course Title:
Software Architectures

Course Code:
SWA

ECTS credits:
9

Course Status:
Core/elective

Prerequisites:
Professional Skills in Software Engineering,

Algorithms & Data Structures, Introduction to Software Engineering,

Programming Languages, Object-Oriented Programming,

Software Requirements, Software Design

Learning outcomes:

Upon completion of this course, students should be able to:

1. select and apply appropriate architecture in the construction of a software application;

2. describe issues, principles, methods and technology associated with software architectures;

3. select, with appropriate justification, architectures that will result in the efficient and effective development of specialised software systems;

4. select, with justification, an appropriate set of tools to support the development of a range of software products;

5. use programming languages, software design knowledge and construction tools to implement a software system of medium size.

Aims & Objectives:

The aims of this course are:

1. to analyse and evaluate an architecture in a given area of software development (e.g. management, modeling);

2. to examine various software architectures;

3. to discuss the advantages and disadvantages of software architectures;

4. to demonstrate the capability to use a range of software tools in support of the development of a software product of medium size.

Syllabus Contents (Main topics):

Interface specification

Protocol specification

Reference model

Software integration strategies

Data integration strategies

Applications selection

Services selection

Components selection

Communication protocols selection

Software structure and architecture

Architectural styles (macroarchitecture)

Design patterns (microarchitecture)

Object-oriented architectural design

Design prototyping

Software engineering tools

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about software architectures.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

2. Meyer B., Object-oriented Software Construction, New Jersey: Prentice Hall, (1997).

3. Pfleeger S., Software Engineering: Theory and Practice, New Jersey: Prentice Hall, (1998).

4. Pigoski T.M., Practical Software Maintenance, New York: John Wiley & Sons, (1997).

5. Pressman R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, (1997).

6. Shaw M., D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, New Jersey: Prentice Hall, (1996).

7. Steve A., F. Patrinostro, Software Configuration Management, New York: McGraw-Hill, (1992).

URLs (Web sites)

www.sei.cmu.edu/str/descriptions/clientserver_body.html
www.isr.uci.edu/architecture/
www.htc.honeywell.comm/projects/dssa/
www.cmis.csiro.au/adsat/
www2.umassd.edu/SECenter/SAResources.html
sunset.usc.edu/research/software_architecture/SwArch_main.html
Course Title:
Data Management Techniques

Course Code:
DMT

ECTS credits:
9

Course Status:
Core/elective

Prerequisites:
Algorithms & Data Structures, Introduction to Software Engineering,

Programming Languages, Object-Oriented Programming

Learning outcomes:

Upon completion of this course, students should be able to:

1. identify the stages in the database design lifecycle, and discuss the significance and limitations of each stage in terms of its combination towards the production of an effective database;

2. demonstrate understanding of the relational data model;

3. undertake the development of a database from conceptual level, through logical design, performance analysis, and implementation, providing appropriate query and reporting facilities for users;

4. evaluate the developed database against user requirements.

Aims & Objectives:

The aims of this course are:

1. to provide students with a theoretical background and practical knowledge of relational database systems;

2. to provide students with an overview of advanced database systems;

3. to discuss the architecture of DBMS against user requirements;

4. to compare the data models;

5. to demonstrate a critical knowledge of the key theoretical issues;

6. to select and apply appropriate DBMS in the construction of a software application;

7. to conduct a database review using appropriate guidelines.

Syllabus Contents (Main topics):

Data modeling

Architecture of DBMS

Relational database design

Object-oriented databases

Database query languages

Data mining

Transaction processing

Information storage and retrieval

Intellectual property

Privacy and civil liberties

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about database development life-cycle.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Connoly T., C. Begg, Database Systems: a Practical Approach to Design, Implementation and Management, Addison-Wesley, (2001).

2. McFadden F., J. Hoffer, Modern Database Management, Addison-Wesley, (2000).

3. Garcia_Molina H., J. D. Ullman, J. Widom; Database Systems – the complete book

4. Shah N., Database Systems Using Oracle

5. Earp R., S. Bagui, Learning SQL

6. Sunderraman R., Oracle 8 Programming

URLs (Web sites)

Dr. Rajshekhar Sunderraman Department of Computer Science Georgia State University Atlanta, Georgia 30303, U.S.A. – teching materials, online books and tutorials in databases: http://tinman.cs.gsu.edu/~raj/index.html
Jeffrey D. Ullman – web site – online testing center, database courses and materials, lecture notes - http://www-db.stanford.edu/~ullman/
Jennifer Widom – web site - database courses and materials, lecture notes - http://www-db.stanford.edu/~widom/
Materials on database design - http://www.kirtland.cc.mi.us/cis/CIS235/
Introduction to Databases http://www-db.stanford.edu/~widom/cs145/
Course Title:
Design of Human-Computer Interfaces

Course Code:
HCI

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Computer Architectures, Software Design, Software Architectures,

Data Management Techniques, Legal Aspects of Software Development

Learning outcomes:

On completion of this course the students should be able to:

1. demonstrate a critical awareness of current techniques of task analysis, dialogue design, user interface implementation and ergonomic design;

2. perform each of these within a specific human-computer work environment;

3. critically appraise methods and guidelines for HCI evaluation, and recommend and justify a set of evaluation techniques and evaluative criteria;

4. demonstrate knowledge of a wide range of interfacing techniques and styles by designing and evaluating an improved design for a given user interface.

Aims & Objectives:

The aims of this course are:

1. to equip students with an integrated view of modern human-computer interactions;

2. to explore theoretical and practical issues in the design, implementation and evaluation of user interfaces and human-computer interaction;

3. to discuss user interface concerns that are fundamental to the success of any software systems, e.g. task analysis, dialogue design, user support;
4. to discuss social and ethical aspects of human-computer interaction.

Syllabus Contents (Main topics):

Interface specification

Foundation of human-computer interaction

User interface architecture

Models of HCI

Prototyping user interfaces

Building a simple graphical user interface

Human-centred software evaluation

Human-centred software development

Graphical user interface design

Graphical user interface programming

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a real project, about human-computer interaction.

Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Dix A.J., Human-Computer Interaction, Prentice-Hall, (1998).

2. Faulkner C., The essence of human-computer interaction, Prentice-Hall, (1997).

3. Hobbs D., Moore D., Human-Computer Interaction, Financial Times Management, (1998).

4. Shneiderman B., Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison-Wesley, (1998).

URLs (Web sites)

www.hcibib.org/
www.cs.umd.edu/projects/hcil/
www.ida.liu.se/labs/aslab/groups/um/hci/
www.hcii.cs.cmu.edu/
www.hcim.com/
stanford.edu/hci.html
www.hci-journal.com/
www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
www.hci.cornell.edu/
www.cs.york.ac.uk/hci/
www.degraaff.org/hci/
www.hci.uu.se/
Course Title:
Internet Technologies

Course Code:
IT

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Operating Systems, Computer Networks

Learning outcomes:

On completing this course, the students will

1. have detailed knowledge of common network applications (e.g. email, news, FTP, Web);

2. be able to install and configure Web servers, e.g. IIS, Apache;

3. have a good understanding of markup languages - HTML, XML;

4. have had some exposure to programming for the Internet based on CGI/Perl;

5. organise and present information in Web-sites.

Aims & Objectives:

The aims of this course are:

1. to develop an understanding of network technologies and applications, and be able to demonstrate proficiency in internetworking;

2. to develop a basic understanding of web software technologies;

3. to provide comprehensive coverage on all aspects of client-side Web development;

4. to give a fundamental knowledge about existing and evolving Web-technologies;

5. to present a series of style tips for using HTML.

Syllabus Contents (Main topics):

WAN

Internet

Visualisation

Multimedia

Multimedia authoring tools

Hypertext and hypermedia

Hypermedia authoring systems

Client-server technology

Technology for developing distributed applications

Teaching and Learning Methods:

The lectures provide the theoretical basis. The workshops are oriented towards deep understanding of HTML, including CSS/DHTML, forms, CGI

Assessment Procedure:

Students are given a mark based on their activity during workshops. The final mark is a weighted average of this mark (0.4) and the mark from a written final test (0.6), including both theoretical and practical questions.

Indicative Sources:

Books:

1. Castro E., HTML for the World Wide Web with XHTML and CSS: Visual QuickStart Guide, Fifth Edition, Peachpit Press, 2002, ISBN: 0321130073

2. Comer D.E., D. L. Stevens, Internetworking with TCP/IP Vol. III Client-Server Programming and Applications-Windows Sockets Version, Prentice Hall, 2nd edition, 1997

3. Frisch A., Essential System Administration. O'Reilly & Associates Inc., 2002.

4. Hunt G., TCP/IP Network Administration. O’Reilly & Associates Inc., 2002.

5. Liu C., J. Peek, R. Jones, B. Buus, A. Nye. Managing Internet Information Services, O'Reilly & Associates Inc., 1994

6. Microsoft Windows 2000 Server Internetworking Guide, Microsoft Press, 2002

7. Stein, L.D., How to Set Up and Maintain a World Wide Web Site, 1996.

8. Tilton, E. et.al., Web Weaving, 1999.

URLs (Web sites):

http://www.perl.com/
http://www.apache.org/dist/httpd/
http://jakarta.apache.org/site/binindex.html
http://www.prenhall.com
Course Title:
Computer Architectures

Course Code:
CA

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Discrete Structures,
 Algorithms and Data Structures,

Programming Languages

Learning outcomes:

After this course the students will know the main principles of data representation and computer processing on arithmetic and logic level, such as the basic computer architectures for computer systems building and its characteristics.

Aims & Objectives:

The aim of the course is to present:

1. the principles of arithmetic and logic basis of computing;

2. the basic architectural models;

2. the global organization of computer system on machine level and its structure and functionality;

3. the organization of input/output system and present some system characteristics.

Syllabus Contents (Main topics):

Digital logic and digital systems

Arithmetic basis

Basic computer architectures

Assembly level machine organisation

Programming in Assembly language

Memory system organisation and architecture

Peripheral devices & interfaces

Performance enhancements

Teaching and Learning Methods:

Lectures (with slides, multimedia projector) and additional auxiliary text and electronic materials for discussion; web site of the course; laboratory work (based on manual with instructions) with a tutorial for every laboratory theme; software environment for e-learning.

Assessment Procedure:

Written exam.

Indicative Sources:

Books

1. Hennessy, J.L., D.P. Patterson. Computer Architecture – A Quantitative Approach (3rd edition), MK Publ., 2003.

2. Parhami, B. Computer Arithmetic: Algorithms and Hardware Design. Oxford Univ. Pres, 2000.

3. Stalling, W. Computer Organization and Architecture: Principles of Structure and Function (2nd edition),McMillan Publ., 1990.

URLs:

www.mkp.com/CA3/
Course Title:
Mathematics 3

Course Code:
MA3

ECTS credits:
6

Course Status:
Core/elective
Prerequisites:
Mathematics 2

Learning outcomes:

After this course the students will understand and use main principles of applied mathematics

Aims & Objectives:

The aims of this course are:

1. to give knowledge in many aspects in the field of multi-variable calculus and it's advanced application

2. to provide a basis for mathematical modelling in technical sciences and for using systems as MATLAB
Syllabus Contents (Main topics):

Functions of several variables

Multiple integrals

Linear and surface integrals

Operation calculus and application

Theory of probability

Mathematical statistics

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Apostol T.M., Calculus (multi variable calculus and linear algebra, with applications to differential equations and probability), John Wiley & Sons, 1969.

2. Grinstead C., J. Snell, Introduction to probability, 1996.

3. Swokowski E., J. Cole, D. Pence, M. Olinick, Calculus of Several Variable, 1995.

4. Sean Mauch, Introduction to method of applied mathematics – advanced mathematical methods for scientists and engineers, 2002.

URLs (Web sites):

Any site responding to the key words "multy variable calculus courses", "operati​onal calculus courses", "probability and statistics courses".
Course Title:
Computer Graphics

Course Code:
CG

ECTS credits:
6

Course Status:
Core/elective
Prerequisites:
Introduction to Programming, Algorithms & Data Structures

Learning outcomes:

On completion of this course the students should be able to design, analyze, program, support, develop the Computer Graphics elements and Systems for Computer Human Interfaces&Interaction, Games and etc.

Aims & Objectives:

The aims of this course are:

1. to design and construct models that represent information in ways that support the creation and viewing of images;

2. to design devices and techniques through which the person may interact with the model or the view;

3. to determine and present underlying correlated structures and relationships in both scientific (computational and medical sciences) and more abstract datasets.

Syllabus Contents (Main topics):

Fundamental techniques in graphics

Geometric modeling

Basic rendering

Computer animation

Visualization

Virtual reality

Multimedia

Teaching and Learning Methods:

50% ex cathedral, 50% hands-on

The lecture topics, which are presented above, give the main theoretic aspects of the Computer Graphics theory and practice. These are further developed in workshops by introducing case studies. The students study the main program elements and structures of the corresponding CG Languages and Systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty and/or a written test. The final mark is formed as weighted average of the marks from the workshops, exam and the test.
Indicative Sources:

Books:

1. Computer Graphics with Open GL, 3/e. Donald D. Hearn, Hearn & Baker, Inc.M. Pauline Baker, University of Illinois, Urbana. Prentice Hall, 2004.

2. Computer Graphics, C Version 2/e . Donald D. Hearn, Hearn & Baker, Inc., M. Pauline Baker, University of Illinois, UrbanaPrentice Hall , 1997

3. 3D Graphics&Animation. Mark Giambruno, Prentice Hall, 2002.

4. Computer vision: A Modern Approach. David Forsyth, University of California, Berkeley. Jean Ponce, University of Illinois at Urbana-Champaign, Prentice Hall, 2003.

Course Title:
Software Security

Course Code:
SWS
ECTS credits:
5

Course Status:
Core/elective
Prerequisites:
Software Requirements, Software Design, Software Quality,

Software Construction & Evolution, Mathematics 3,

Software Verification & Validation

Learning outcomes:

After the course the students will deal with basic cryptographic methods and algorithms that are at the root of contemporary security systems.

Aims & Objectives:

Explain the theory behind symmetric and asymmetric cryptographic algorithms, block and stream ciphers and modes of operations. Present a technical overview of standards for block encryption (AES) and digital signature generation and verification (RSA, DSS). Give an elementary treatment of hash functions and elliptic curves.
Syllabus Contents (Main topics):

Security and protection

Data mining

Information storage and retrieval

Cryptographic methods

Cryptographic algorithms

Cryptographic protocols

Data security and integrity

Teaching and Learning Methods:

Lectures (with slides, multimedia projector) supplemented with product range of companies. Computer classes employ examples with cryptographic operations: basic methods and algorithms, such as encryption, key generation and authentication.

Assessment Procedure:

Written exam.

Indicative Sources:

Books:

1. Becket, B., Introduction to Cryptology and PC Security, 1997.

2. Menezes, A.J., van Oorshot et.al., A Handbook of Applied cryptography, 1999.

URLs:

www.cryptosoft.com/
www.shmoo.com/crypto/asymmetric /
Course Title:
Legal Aspects of Software Development

Course Code:
LSD

ECTS credits:
5

Course Status:
Core/elective
Prerequisites:
Professional Skills in Software Engineering

Learning outcomes:

On completion of this course the students should have overview knowledge of laws governing the social issues invoked by IT and computing industries, including the Human Rights Act, Freedom of Information Act and UN Declaration on Human Rights and be able to:

1. give articulate understanding of the main ethical theories used in this field;

2. identify an ethical issue;

3. verbally express personal ethical principles;

4. appreciate alternative, often conflicting, ethical principles in the global sphere of the Internet;

5. distinguish between statements of fact and statements of value;

6. discriminate between reasons and good reasons;

7. discuss future development and deployment of computing and information technologies and assess the possible ethical, legal and professional issues invoked.

Aims & Objectives:

The aims of this course are:

1. to introduce and review Codes of Ethics and Codes of Conduct governing the behaviour of software engineering professionals;
2. to provide the students with the tools enabling them to build software products to appropriate ethical, legal and professional standards

3. to provide a broad understanding of the impact of information technology on humanity and the environment;
4. to explore the importance of knowing one's belief system and values when confronting issues at the workplace and what it means to take social responsibility.
Syllabus Contents (Main topics):

Social context of computing

Professional and ethical responsibilities

Risks and liabilities of computer-based systems

Intellectual property

Privacy and civil liberties

Computer crime

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lectures will be used to introduce topics and to provide the theoretical framework. These are further developed in workshops by introducing case studies.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam. Assignments, Debate, Presentations, Attendance and Progress.
Indicative Sources:

Books:

1. Ayres R, The Essence of Professional Issues in Computing, Prentice Hall, (1999).

2. Baase S., A Gift of Fire: Social, Legal and Ethical Issues in Computing, Prentice Hall, (1997).

3. Kallman E. A., Grillo J.P., Ethical Decision Making and Information Technology, McGraw-Hill, (1996).

4. Johnson D., Nissenbaum H.F., Computer Ethics and Social Value, Prentice Hall, (1995).

5. Langford D., Internet Ethics, Macmillan Press Ltd, (2000).

6. Langford D., Business Computer Ethics, Addison-Wesley, (1999).

7. Langford D., Practical Computer Ethics, McGraw-Hill, (1995).

8. Spinello R, Ethical Aspects of Information Technology, Prentice-Hall, (1995).

Course Title:
Translator Design

Course Code:
TD

ECTS credits:
6

Course Status:
Core/elective
Prerequisites:
Software Design, Software Architectures,

Data Management Techniques, Legal Aspects of Software Development

Learning outcomes:

On completion of this course the students should be able to:

1. describe the steps and algorithms used by language translators;

2. recognise the underlying formal models such as finite state automata, push-down automata and their connection to language definition through regular expressions and grammars;

3. evaluate the different approaches to formal semantics;

4. evaluate languages with regard to typing;

5. demonstrate knowledge of a wide range of translation systems by designing and evaluating a given language translator.

Aims & Objectives:

The aims of this course are:

1. to equip students with an integrated view of modern translation systems;

2. to explore theoretical and practical issues in the design, implementation and evaluation of language translators;

3. discuss the effectiveness of optimisation;

4. explain the importance of formal semantics;

5. differentiate between formal and informal semantics;

6. describe the different approaches to formal semantics;

7. explain the impact of a separate compilation facility and the existence of program libraries on the compilation process.

Syllabus Contents (Main topics):

Context-free grammars

Automata theory

Advanced non-linear structures

Memory system organisation and architecture

Language translation systems

Programming language semantics

Recursion

Proof Techniques

Programming language design

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a real project, about translator design.

Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Aho A.V., R. Sethi, J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, (1986).

2. Alblas H., A. Nymeyer, Practice and Principles of Compiler Building with C, Prentice-Hall, (1996).

3. Fischer C., R. LeBlanc. Crafting a Compiler with C, Addison-Wesley, 1991.

4. Ghezzi C., M. Jazayeri, Programming Language Concepts, John Wiley & Sons, (1987).

5. Hopcroft J., R. Motwani, J. Ullman. Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 2001.

6. Lemone K.A. Design of compilers: Techniques of Programming Language Translation, CRC Press, (1992).

7. Parsons T.W., Introduction to Compiler Construction, Computer Science Press, (1992).

8. Pittman T., J. Peters, The Art of Compiler Design, Theory and Practice, Prentice-Hall, (1992).

9. Watt D.A., Programming Language Processors, Prentice-Hall, (1993).

10. Wilhelm R., D. Maurer, Compiler Construction, Addison-Wesley, (1995).

URLs (Web sites)

www.cs.vu.nl/~dick/MCD.html
www.cs.caltech.edu/courses/cs/cs134/cs134b/
www.cse.ogi.edu/courses/CSE511/
Topaz.cs.bgu.edu/text/html/Textbook/
www.csa.iisc.ernet.in/Courses/soi2000/node23.html
www.ccs.neu.edu/course/com3355/
ropas.kaist.ac.kr/~kwang/420/99/
yarchive.net/comp/compiler.html
www.cs.bris.ac.uk/~ian/formal/
matf.bg.ac.yu/~goran/piie.html
www.cs.vassar.edu/~cs331/
Course Title:
Operating Systems

Course Code:
OS

ECTS credits:
6

Course Status:
Core/elective
Prerequisites:
Computer Architectures, Legal Aspects of Software Development,

Translator Design

Learning outcomes:

On completion of this course the students should be able to:

1. describe the essential components of an operating system;

2. analyse the main components of three different types of OS – single-user single tasking, single-user multi-tasking, multi-user multi-tasking;

3. evaluate the operating system against the user requirements.

Aims & Objectives:

1. Equip students with an integrated view of modern operating systems.

2. Modularity, concurrency and distribution are the unifying themes, both within the design of OS and in the systems supported by OS.

3. The course is designed to provide a practical guide using as a basis the familiar OS of UNIX and Windows 2000.

Syllabus Contents (Main topics):

Operating system principles

Process description and control

Concurrency

Scheduling and dispatch

Memory management

I/O management

File management

Security and protection

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. In some of the workshops the students study the main commands of the corresponding OS, and in the other workshops simulation software tools are used to explore and study the OS.

Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Bacon J., T. Harris, Operating Systems – concurrent and distributed software design. Addison-Wesley, (2003).

2. Bic L., A. Shaw. Operating Systems Principles, Prentice Hall, (2003).

3. Nutt G., Operating Systems: A Modern Perspective, Addison-Wesley, (2002).

4. Ritchie C., Operating Systems incorporating UNIX & Windows, Letts Educational, (1997).

5. Silberschatz A., P. Galvin, G. Gagne. Operating Systems Concepts, John Wiley & Sons, (2003).

6. Solomon D., M. Russinovich. Inside Microsoft Windows 2000, Microsoft Press, (2000).

7. Stallings W., Operating Systems, Prentice Hall, (2001).

8. Tanenbaum A.S., A.S. Woodhall, Operating Systems, Design and Implementation, Prentice-Hall, (1997).

9. Welsh M., M. Dalheimer, T. Dawson, L. Kaufman. Running Linux, O'Reilly and Associates, (2002).

URLs (Web sites)

www.cis.temple.edu/courses-os.html
www.williamStallings.com/os4e.html
www.mines.edu/fs_home/tcamp/GUI/index.html
www.cs.vu.nl/~ast/minix.html
www.bochs.com
Course Title:
Computer Networks

Course Code:
CN

ECTS credits:
6

Course Status:
Core/elective
Prerequisites:
Computer Architectures, Operating Systems
Learning outcomes:

1. The students will understand the state-of-the-art in network and communication protocols, architectures and applications.

2. They will have a basic knowledge of network designing, installation, administration and maintenance.

3. They will design the network based on the “client/server” principles.

4. They will learn basic and extended administration, stability and security of LAN.

Aims & Objectives:

1. Theoretical fundamentals of computer networks.

2. Discussing the wide range of aspects of the network security and reliability.

3. Theory of developing multi tier client-server systems.

4. Learning and comparison of the most popular LAN technologies.

5. Integration and interconnection between different types of networks.

6. Learning and understanding the modern theory of data communication.

Syllabus Contents (Main topics):

Peripheral devices & interfaces

Data communication

Network protocol stacks

Network management and security

WAN

Internet

Passive components and LAN equipment

LAN technologies

Network integration

Administration and management of LANs

Teaching and Learning Methods:

Lectures, workshops, biweekly home works.

A large course work during the semester.
Assessment Procedure:

Final exam in a form of a multiple choice test:

60% of the general assessment.

Course work evaluation: 30%.

Home works evaluation: 10%.
Indicative Sources:

Books:

1. Bertsekas D., Gallager R., Data Networks, Prentice Hall, 1991.

2. Halsall, F. Data Communications, Computer networks and Open Systems 4th Ed., Addison-Wesley 1996.

3. Halsall, F. Multimedia Communications Applications, Networks, Protocols and Standards, Pearson Education Ltd. 2001.

4. Huitema C., Routing in the Internet, Prentice Hall PTR, 2000

5. Keshav S., An Engineering Approach to Computer Networking, Addison-Wesley Pub Co, 1997

6. Partridge C., Gigabit Networking, Addison-Wesley Pub Co, 1994

7. Paul S., Multicasting on the Internet and its Applications, Kluwer Academic Publishers, 2003

8. Peterson L., Davie B., Computer Networks: A Systems Approach, Morgan Kaufmann, 1999.

9. Proebster, W. E. Rechner -netze Technik Protokolle Systeme Anwendungen - R. Oldenburg Verlag Muenchen 1998.

10. Stallings, W. Data and Computer Communications 6th ed., 2000.

11. Stevens W. R., TCP/IP Illustrated, Volumes 1-3, Addison Wesley Professional, 2002

12. Tanenbaum A., Computer Networks, Prentice Hall PTR, 2002

13. Walrand J., Communication Networks: A First Course, McGraw-Hill Science / Engineering / Math, 1998

14. Walrand J., Varaiya P., High-Performance Communication Networks, Morgan Kaufmann, 1999

URLs (Web sites):

http://www.protocols.com -
http://www.rad.co.il - Rad University
http://www.data.com/ - tutorials

http://www.iec.org/ - tutorials

http://www.cisco.com - tutorials

Ethernet – Charles Spurgeon site

Course Title:
Software Verification & Validation

Course Code:
SV

ECTS credits:
5

Course Status:
Core/elective
Prerequisites:
Introduction to Software Engineering, Software Requirements,

Software Quality, Software Construction & Evolution

Learning outcomes:

Upon completion of this course, students should be able to:

1. understand the role and importance of software verification and validation in a software project;

2. distinguish between program validation and verification;

3. create, evaluate and implement a test plan for medium-size software products;

4. undertake, as part of a team activity, an inspection of a medium-size code segment.

Aims & Objectives:

The aims of this course are:

1. to describe the role and importance of software verification and validation in a software project;

2. to describe the role that tools can play in the validation of software;

3. to distinguish between the different types and levels of testing (unit, integration, systems and acceptance) for medium-size software products;

4. to discuss the activities for validating the software product (unit testing, performance testing, integration testing, system testing and acceptance testing);

5. to discuss the issues involving the testing of object-oriented software.

Syllabus Contents (Main topics):

Inspection and testing in the procedural paradigm

Inspection and testing in the object-oriented paradigm

Activities and techniques for verification and validation

Testability

Test levels

Test techniques

Test related measures

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about software verification and validation.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Humphrey W.S., Introduction to the Team Software Process, Massachusetts: Addison-Wesley, (1999).

2. IEEE Std. 829 – 1998, IEEE Standard for Software Test Documentation.

3. Koomen T., M. Pol, Test process improvement: a practical step-by-step guide to structured testing, Addison-Wesley, (1999).

4. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

5. Perry W., Effective Methods of Software Testing, John Wiley & Sons, Inc., (2000).

6. Pfleeger S., Software Engineering: Theory and Practice, New Jersey: Prentice Hall, (1998).

7. Pressman R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, (1997).

URLs (Web sites)

www.concept-pro.com/validation.html
www.sei.cmu.edu/products/videos/sw/verif.val.html
www.hanford.gov/lessons/sitell/ll99/199943.html
www.oei-edu.com/s696.htm
www.computer.org/software/so1989/s3010abs.htm
www.12207.com/v&v.htm
selab.netlab.uky.edu/introduction.html
Course Title:
Multimedia Systems
Course Code:
MMS

ECTS credits:
6

Course Status:
Core/elective
Prerequisites:
Object-Oriented Programming, Internet Technologies,

Computer Graphics, Operating Systems, Computer Networks

Learning outcomes

Upon successful completion of this course, the student will:

1. Understand the characteristics of multimedia systems and how to address issues;

2. Be aware of the differences among multimedia authoring systems;
3. Understand the computer technologies, which support multimedia systems;

4. Understand multimedia development methodologies;
5. Be able to apply these methodologies to systematic development of multimedia applications.

Aims & Objectives

Introducing the principles and current technologies of multimedia systems. Issues in effectively representing, processing, and retrieving multimedia data such as sound and music, graphics, image and video will be addressed. Topics will include system design, representation, retrieval of temporal and non-temporal media type, compression techniques including JPEG and MPEG encoding, system architecture, networking, and quality-of-service. The course will contain a detailed examination of the hardware and software platforms required for both the development and execution of multimedia systems.
Syllabus Contents (Main topics)

Multimedia

Multimedia authoring tools

Hypertext and hypermedia

Hypermedia authoring systems

Geometric modeling

Basic rendering

Computer animation

Visualization

Virtual reality

Teaching and Learning Methods

The lectures provide the theoretical basis. The workshops involve every student to solve different tasks concerning work with multimedia systems.

Assessment Procedure

Grades will be assigned based on homework assignments and a semester project. The grade will be computed from the: Project and Formal examination: 70%; Continuous assessment: 30% (practical assignments)
Indicative Sources

Books:

1. Aitken P., S. Jarol, "Visual C++ Multimedia Adventure Set", Coriolis Group Books, 1995.
2. Andleigh, Prabhat K. & Thakrar, K., Multimedia Systems Design, Prentice-Hall, 1998.
3. Bhaskaran V., K. Konstantinides, "Image and Video Compression Standards: Algorithms and Architectures", 2nd ed., Kluwer Academic Publishers, 1997.

4. Buford J., Multimedia Systems, Addison-Wesley, 1995.

5. England E., A. Finney, Managing Multimedia, Addison-Wesley, 1999.

6. Halsall F., Multimedia Communications, Addison-Wesley, 2001.

7. McGloughlin S., Multimedia: Concepts and Practice, ISBN: 0130575062, Prentice Hall, 2001.

8. Steinmetz R., K Nahrstadt, Multimedia Fundamentals, Prentice Hall, 2002.

9. Steinmetz R., Klara Nahrstedt, Computing, Communications & Applications ISBN: 0133244350, Prentice Hall, 1995.

10. Rees M., Andrew White, Bebo White: Designing Web Interfaces Interactive Workbook, ISBN: 0130858978, Prentice Hall, 2001.

Course Title:
Internet Programming

Course Code:
IP

ECTS credits:
6

Course Status:
Core/elective
Prerequisites:
Programming Languages, Object-Oriented Programming,

Data Management Techniques, Internet Technologies

Learning outcomes:

On completing this course, students will be able to

1. use the Java programming language;

2. create interactive Web-pages using different technologies;

3. create Web-pages with access to databases;

4. outline various scenarios for Internet applications and select the most appropriate in a particular setup;

5. discuss distributed applications architectures ‑ message-based, RPC-based, services-oriented;

6. distinguish, assign and implement client-side and server-side processing;

7. design and develop full-fledged Internet applications (e.g. multi-threaded, multi-tier, with a suitable GUI).

Aims & Objectives:

1. Based on previous knowledge in programming, make students familiar with the Java programming language.

2. Introduce students to client-side programming with some studying of JavaScript.

3. Introduce students to server-side programming with detailed studying of PHP/MySQL.

4. Cover both traditional and emerging approaches to the development of Internet applications.

5. Focus on platform- and language-independent technologies.

6. Theoretical knowledge and practical skills acquired are targeted towards developing real-world applications, as well as graduate theses.

Syllabus Contents (Main topics):

Programming languages for web-based software development

Client-server technology

Technology for developing distributed applications

Data mining

Transaction processing

Database query languages

Multimedia

Building web applications for E-Commerce

Building web applications for E-Publishing

Building web applications for E-Learning

Teaching and Learning Methods:

The lectures provide the theoretical basis. The workshops include a number of complete tasks to be solved.

Assessment Procedure:

Written test plus hands-on creating a Web page with elements of programming. The final mark is a weighted average of the test (0.35) and the hands-on (0.65).

Indicative Sources:

Books:

1. Bruce Eckel, Thinking in Java (2nd Edition), Prentice Hall, 2nd Book and CD-ROM edition, 2000, ISBN: 0130273635

2. David Flanagan, O'Reilly & Associates, JavaScript: The Definitive Guide, 4th edition, 2001, ISBN: 0596000480

3. Deepak Thomas et.al., Professional PHP4 Programming, Wrox Press Inc., 2002, ISBN: 1861006918

4. Hugh E. Williams, David Lane, O'Reilly & Associates, Web Database Applications with PHP & MySQL, 2002, ISBN: 0596000413

5. Luke Welling, Laura Thomson, PHP and MySQL Web Development, Sams, 2001

URLs (Web sites):

http://java.sun.com
http://developer.netscape.com/docs/
http://www.php.net
http://stardeveloper.com:8080/javaserverpages.asp
http://www.codebits.com/
