Masters of Science

in

Software Engineering

Syllabi

Course Title:
Legal and Ethical Aspects

Course Code:
LEA

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:

Learning outcomes:

On completion of this course the students should:

1. give articulate understanding of the main ethical theories used in this field;

2. have an overview knowledge of laws governing the social issues invoked by IT and computing industries, including the Human Rights Act, Freedom of Information Act and UN Declaration on Human Rights;

3. identify an ethical issue;

4. verbally express personal ethical principles;

5. appreciate alternative, often conflicting, ethical principles in the global sphere of the Internet;

6. demonstrate critical thinking skills;

7. distinguish between statements of fact and statements of value;

8. demonstrate responsible behaviour of a computer professional directed principles, for example, ethics, law and professionalism;

9. discuss future development and deployment of computing and information technologies and assess the possible ethical, legal and professional issues invoked.

Aims & Objectives:

The aims of this course are:

1. to review Codes of Ethics and Codes of Conduct governing the behaviour of software engineering professionals;
2. to provide the students with the tools enabling them to build software products to appropriate ethical, legal and professional standards

3. to provide a broad understanding of the impact of information technology on humanity and the environment;
4. to explore the importance of knowing one's belief system and values when confronting issues at the workplace and what it means to take social responsibility.
Syllabus Contents (Main topics):

Evaluation and validation of knowledge management

Knowledge management and social engineering

Intelligent agent technologies

Hierarchical and flow models of organization

Organizational work groups

Organizational span.

Single user.

Work group. Team. Enterprise. Global

Software sales, licensing and agency

Contract and privacy law

Ethics and protection of intellectual property rights

CS society and ethics

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lectures will be used to introduce topics and to provide the theoretical framework. These are further developed in workshops by introducing case studies.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam. Assignments, Debate, Presentations, Attendance and Progress.
Indicative Sources:

Books:

1. Ayres R, The Essence of Professional Issues in Computing, Prentice Hall, (1999).

2. Baase S., A Gift of Fire: Social, Legal and Ethical Issues in Computing, Prentice Hall, (1997).

3. Kallman E. A., Grillo J.P., Ethical Decision Making and Information Technology, McGraw-Hill, (1996).

4. Johnson D., Nissenbaum H.F., Computer Ethics and Social Value, Prentice Hall, (1995).

5. Langford D., Internet Ethics, Macmillan Press Ltd, (2000).

6. Langford D., Business Computer Ethics, Addison-Wesley, (1999).

7. Langford D., Practical Computer Ethics, McGraw-Hill, (1995).

8. Spinello R, Ethical Aspects of Information Technology, Prentice-Hall, (1995).

Course Title:
Software Design and Development

Course Code:
SDD

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Legal and Ethical Aspects, Software Planning
Learning outcomes:

Upon completion of this course, students should be able to:

1. perform an object-oriented architectural design in a team;

2. code a design in a particular language, given a detailed design;

3. prototype a user interface, given a set of interface requirements.

4. describe issues, principles, methods and technology associated with object-oriented software engineering and practices;

5. work as a part of a team and use a software development process to develop a software product.

Aims & Objectives:

The aims of this course are:

1. to discuss the properties of good software design;

2. to compare and contrast object-oriented analysis and design with structured analysis and design;

3. to evaluate the quality of multiple software design based on key design principles and concepts;

4. to evaluate a software design at the component level.

5. to explain the software life cycle and its phases including the deliverables that are produced;

6. to discuss the data management issues in CSCW systems.
Syllabus Contents (Main topics):

Identifying the configuration of a system

From object-process analysis to object-process design

Object-oriented software engineering

Formal methods for object-oriented software engineering

Object-oriented Web-based software engineering

Process-based software engineering

Multimedia software engineering

Scenario planning

Scenario design

Parallel algorithms

Distributed algorithms

Genetic algorithms

The complexity classes P and NP

Implementation through wizards

Computer-supported cooperation

Software Evolution Processes

Data management issues in CSCW systems

Advances in design and analysis for real-time applications

Internet Software Engineering

Knowledge management and social engineering

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of software systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Booch G., Object-Oriented Analysis and Design with Applications, California: Benjamin/Cummings, (1994).

2. Humphrey W.S., Introduction to the Team Software Process, Massachusetts: Addison-Wesley, (1999).

3. ISO/IEC 12207:1995, Information Technology – Software life cycle processes.

4. Jacobson I. et. al., Object-Oriented Software Engineering: A Use-Case Driven Approach, Addison Wesley, (1992).

5. Laarman C., Applying UML and Patterns, Prentice Hall, (2001).

6. Lee R.C., W.M. Tepfenhart, UML and C++: A Practical Guide to Object-Oriented Development, New Jersey: Prentice Hall, (2001).

7. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

8. Pfleeger S., Software Engineering: Theory and Practice, New Jersey: Prentice Hall, (1998).

URLs (Web sites):

www.argosoft.com
www.sdm.de
sdg.lcs.mit.edu
www.Kapor.com/homepages/mkapor/Software_Design_Manifesto.html
www.plasmatech.com/
www.dcsoft.com/
www.insoftdesign.com/
www.bswd.com/
http://mingo.info-science.uiowa.edu/soft-eng/
Course Title:
Software Architectures

Course Code:
SA

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:
Software Design and Development
Learning outcomes:

Upon completion of this course, students should be able to:

1. select and apply appropriate architecture in the construction of a software application;

2. describe issues, principles, methods and technology associated with software architectures;

3. select, with appropriate justification, architectures that will result in the efficient and effective development of specialised software systems;

4. use software implementation tools to construct software;

5. describe and discuss maintenance processes and techniques.

Aims & Objectives:

The aims of this course are:

1. to analyse and evaluate an architecture in a given area of software development (e.g. management, modeling);

2. to examine various software architectures;

3. to discuss the advantages and disadvantages of software architectures;

4. to analyse the impact of the design and construction process on long-term software maintainability and evolution;

5. to discuss the need for reverse engineering;

6. to develop a plan for re-engineering a medium-sized product in response to a change request;

7. to discuss the advantages and disadvantages of software reuse.

Syllabus Contents (Main topics):

Architectural styles (macroarchitecture)

Design patterns (microarchitecture)

Object-oriented architectural design

Design prototyping

Software integration strategies

Data integration strategies

Advanced non-linear structures

Algorithmic strategies

Algorithms for compression and decompression

Identifying the configuration of a system

Configuration and maintaining the integrity

Configuration and maintaining the traceability

Process-Centered Software Engineering Environments

Process Metamodelling

Commitment Nets in Software Process Improvement

Implementation through wizards

Data flow architectures

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about software architectures.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Lee R.C., W.M. Tepfenhart, UML and C++: A Practical Guide to Object-Oriented Development, New Jersey: Prentice Hall, (2001).

2. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

3. Meyer B., Object-oriented Software Construction, New Jersey: Prentice Hall, (1997).

4. Pigoski T.M., Practical Software Maintenance, New York: John Wiley & Sons, (1997).

5. Shaw M., D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, New Jersey: Prentice Hall, (1996).

6. Steve A., F. Patrinostro, Software Configuration Management, New York: McGraw-Hill, (1992).

URLs (Web sites):

www.sei.cmu.edu/str/descriptions/clientserver_body.html
www.isr.uci.edu/architecture/
www.htc.honeywell.comm/projects/dssa/
www.cmis.csiro.au/adsat/
www2.umassd.edu/SECenter/SAResources.html
sunset.usc.edu/research/software_architecture/SwArch_main.html
Course Title:
Software Testing and Quality Assurance

Course Code:
STQA

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Software Design and Development, Advanced Mathematics,

Software Planning
Learning outcomes:

Upon completion of this course, students should be able to:

1. understand the role and importance of software quality assurance in a software project;

2. develop a quality assurance plan;

3. develop a configuration management plan;

4. perform reviews, inspections and audits;

5. understand the role and importance of software testing in a software project;

6. create, evaluate and implement a test plan software products.

Aims & Objectives:

The aims of this course are:

1. to discuss quality management concepts;

2. to compare various types of software quality management;

3. to overview the IEEE quality standards;

4. to define software quality criteria and metrics;

5. to describe the role that tools can play in the software quality management;

6. to describe the role and importance of software testing in a software project;

7. to describe the role that tools can play in the testing of software;

8. to distinguish between the different types and levels of testing;

9. to discuss the issues involving the testing of object-oriented software.

Syllabus Contents (Main topics):

Numerical methods

Theory of probability

Mathematical statistics

Statistical models

Combinatorial methods

Random variable generation

Unit testing

Performance testing

Integration testing

System testing

Acceptance testing

Project assessment services

Evaluation & Project progress

Metrics for quality and concurrency in object-based systems

Software Evolution Processes

Automatic Verification of Static Policies on Software Models

Testing Processes of Web Applications

Fault-tolerance

Advances in design and analysis for real-time applications

Evaluation and validation of knowledge management

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about software testing and quality management.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. IEEE Std. 829 – 1998, IEEE Standard for Software Test Documentation.

2. Koomen T., M. Pol, Test process improvement: a practical step-by-step guide to structured testing, Addison-Wesley, (1999).

3. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

4. Paulk M., C. Weber, B. Curtis, M. Chrissis, The Capability Maturity Model: Gudelines for Improving the Software Process, Addison-Wesley, (1995).

5. Perry W., Effective Methods of Software Testing, John Wiley & Sons, Inc., (2000).

6. Pressman R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, (1997).

7. Steve A., F. Patrinostro, Software Configuration Management, New York: McGraw-Hill, (1992).

URLs (Web sites):

www.swquality.com/users/pustaver/index.shtml
www.stqemagazine.com
www.asq.org/pub/sqp/
www.asq-software.org/
www.icsq.org/
www.utexas.edu/coe/sqi/
www.pnsqc.org/
www.softwarqatest.com/
www.sqi.gu.edu.au/
www.qaiusa.com/
www.sqi.utexas.edu/
Course Title:
CASE Tools for Software Development

Course Code:
CASE

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:
Software Design and Development, Software Architectures
Learning outcomes:

Upon completion of this course, students should be able to:

1. select, with justification, an appropriate set of tools to support the development of a range of software products;

2. analyse and evaluate a set of tools in a given area of software development (e.g., management, modelling, or testing);

3. demonstrate the capability to use a range of software tools in support of the development of a software product of medium size.

Aims & Objectives:

The aims of this course are:

1. to present the role of CASE tools in the life cycle of software product;

2. to discuss the properties of CASE tools;

3. to compare and contrast the CASE tools;

4. to evaluate CASE tools at the component level.

Syllabus Contents (Main topics):

Process-Centred Software Engineering Environments

Scenario planning

Scenario design

Scenario development tools

Media authoring

Implementation through wizards

Project management tools

Integration tools

Groupware Technology

Object modelling environments

Automatic generation of hypermedia

Graphical query languages

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of software systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Jacobson I. et. al., Object-Oriented Software Engineering: A Use-Case Driven Approach, Addison Wesley, (1992).

2. Lee R.C., W.M. Tepfenhart, UML and C++: A Practical Guide to Object-Oriented Development, New Jersey: Prentice Hall, (2001).

3. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

4. Meyer B., Object-oriented Software Construction, New Jersey: Prentice Hall, (1997).

5. Pigoski T.M., Practical Software Maintenance, New York: John Wiley & Sons, (1997).

6. Pressman R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, (1997).

7. Steve A., F. Patrinostro, Software Configuration Management, New York: McGraw-Hill, (1992).

8. Shaw M., D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, New Jersey: Prentice Hall, (1996).

URLs (Web sites):

www.geocities.com/millermax2001/casetool.html
www.ispras.ru/groups/case/case.html
www.dbmsmag.com/9707d16.html
www.stgcase.com/
www.fourthgeneration.com/c_area.htm
cbl.leeds.ac.uk/nikos/tex2html/examples/concepts/
Course Title:
Software Project Management

Course Code:
SPM

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:
Software Design and Development, Software Planning
Learning outcomes:

Upon completion of this course, students should be able to:

1. demonstrate through involvement in a team project the central elements of team building and team management;

2. prepare a project plan for a software project that includes estimates of size and effort, a schedule, resource allocation, configuration control, change management, and project risk identification and management;

3. compare and contrast the different methods and techniques used to assure the quality of a software product.

Aims & Objectives:

The aims of this course are:

1. to develop an understanding of concepts and problems associated with managing projects;

2. to develop the technical and interpersonal skills needed to undertake a vocationally relevant project;

3. to prepare students for supervised work experience/employment by developing employability skills.

Syllabus Contents (Main topics):

Queuing theory

Problem solving strategies

Design prototyping

Software integration strategies

Data integration strategies

Commitment Nets in Software Process Improvement

Project management tools

Managing object-oriented software development

Groupware Technology

Computer-supported cooperation

Object modelling environments

Project assessment services

Evaluation & Project progress

Metrics for quality and concurrency in object-based systems

Software Evolution Processes

Effectively Managing Process Diversity

Data management issues in CSCW systems

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of software systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Burke R., Project Management – Planning and Control Techniques, John Wiley & Sons, 1999, ISBN: 047 19862X.

2. Field M., L. Keller, Project Management, Int. Thomson Business Press, 2001, ISBN: 186 1522746.

3. Yeates D., J. Cadle, Project Management for Information Systems, Prentice Hall, 2001, ISBN: 027 3651455.

URLs (Web sites):

www.pmi.org
www.projectnet.co.uk
www.pmforum.org/index.htm
Course Title:
Real-time Software Engineering

Course Code:
RTSE

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:
Software Testing & Quality Assurance
Learning outcomes:

Upon completion of this course, students should:

1. identify and discuss the technical and engineering activities of producing a real-time system;

2. describe issues, principles, methods and technology associated with software engineering theory and practices;

3. become real-time software developers capable of using the most modern software engineering technologies;

4. work as a part of a team, use a software development process to develop a real-time software system.

Aims & Objectives:

The aims of this course are:

1. to explain the life cycle and its phases including the deliverables that are produced;

2. to cover basic knowledge about requirements, design, implementation and basic properties of real-time application software;

3. to present the fundamentals of concurrent programming, process synchronization and scheduling, resource management, software reliability, real-time programming languages, and real-time operating systems;

4. to present the best practises based on International standards and advance techniques are developed.

Syllabus Contents (Main topics):

Discrete probability theory

Asymptotic methods

Representation of discrete functions

The complexity classes P and NP

Basics of real-time systems

Development of real-time software systems

Uniprocessor scheduling and resource management

Multiprocessor scheduling and load sharing

Real-time kernels

Time-constrained communications

Concurrent programming

Real-time programming languages

Real-time operating systems

Fault-tolerance

Advances in design and analysis for real-time applications

Object-oriented specification and formal verification of RTS

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of real-time software systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Burns A., A. Wellings, Real-Time Systems and Programming Languages, 3d ed., Addison Wesley, 2001. ISBN 0-201-72998-1.
2. Humphrey W.S., Introduction to the Team Software Process, Massachusetts: Addison-Wesley, (1999).

3. Krishna C. M., K. G. Shin, Real-Time Systems, McGraw Hill, 1997. ISBN 0-07-114243-6
4. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

5. Pfleeger S., Software Engineering: Theory and Practice, New Jersey: Prentice Hall, (1998).

6. Pressman R.S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill, (1997).

7. Schoitsch E. Software Engineering Aspects of Real-Time Programming Concepts. – Computer Physics Communications, 1986, No 41.
URLs (Web sites)

www.c-for-dummies.com
www.eg3.com/real/index.htm
www.real-time.org
www.realtime-info.be
www.case.utm.my/caseflash/

Course Title:
Knowledge-Based Systems

Course Code:
KBS

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:
Software Testing & Quality Assurance

Learning outcomes:

Upon completion of this course, students should be able to:

1. explain the purpose of AI research, its aims and limitations;

2. discuss the role of knowledge within modern organisations and the function of knowledge-based systems as a means of exploring that knowledge;

3. critically appraise the progress which has been made towards matching or exceeding human performance in traditional and new AI fields;

4. demonstrate the ability to select and implement appropriate representational and modelling techniques which have been applied to a range of AI problem domains.

Aims & Objectives:

The aims of this course are:

1. to introduce the student to the latest developments in Artificial Intelligence;

2. to present the issues associated with knowledge-based systems in a number of traditional and new domains;

3. to investigate knowledge representation and reasoning in these domains;

4. to consider effectiveness of knowledge-based systems currently being used and the likely benefits in the future;

5. to give the students knowledge in the fundamental issues and architecture of knowledge-based systems;
6. to discuss philosophical, ethical and social issues concerning knowledge-based systems.

Syllabus Contents (Main topics):

Recursive relations

Problem solving strategies

Proof Techniques

Algorithmic strategies

Distributed algorithms

Data mining

Knowledge-Based Software Process Simulation Model

Information agent technology for the Internet

Virtual reality for Knowledge-Based Systems

Knowledge audit

Knowledge technology

Knowledge scenarios

Knowledge development

Knowledge management styles

Interactive knowledge management

Knowledge economy and management

Evaluation and validation of knowledge management

Knowledge management and social engineering

Intelligent agent technologies

Knowledge representation in multimedia databases

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of knowledge-managed systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:
1. Dean Th., J. Allen, Y. Aloimonos. Artificial Intelligence: Theory and Practice. Addison-Wesley, 1st ed. 1995, ISBN 0805325476.

2. Luger G.F. and W.A. Stubblefield . Artificial Intelligence: Structures and Strategies for Complex Problem Solving. Addison-Wesley, 4th ed., 2002. ISBN 0201648660.

3. Nilsson N. J. Artificial Intelligence: A New Synthesis. Morgan Kauffman Publishers, 2nd ed. 1998, ISBN 1558604677.

4. Peter Jackson. Introduction to Expert Systems. Third Edition. Addison-Wesley, 2001.

5. Poole D., A. Mackworth, R. Goebel. Computational Intelligence: A Logical Approach. Oxford University Press, 1st ed. 1998, ISBN 0195102703.

6. Russel S. J., P. Norvig. Artificial Intelligence. A modern Approach. Pearson Education International, Prentice Hall, 2003. ISBN 0137903952

7. Winston P. H. Artificial Intelligence. Addison-Wesley, Reading, Massachusetts, 3d ed. 1998, ISBN 0201533774.

URLs (Web sites)

http://www.pearsoneduc.com/
http://sentosa.sas.ntu.edu.sg:8000/
Course Title:
Network Technologies

Course Code:
NT

ECTS credits:
7

Course Status:
Core/elective

Prerequisites:
Advanced Computer Architectures

Learning outcomes:

The students will:

1. understand the state-of-the-art in network and communication protocols, architectures and applications;

2. have a basic knowledge of network design, installation, administration and maintenance;

3. design a network based on the “client/server” principles;

4. learn basic and extended administration, stability and security of LAN.
Aims & Objectives:

1. Theoretical fundamentals of computer networks.

2. Discussing the wide range of aspects of the network security and reliability.

3. Theory of developing multi tier client-server systems.

4. Learning and comparison of the most popular LAN technologies.

5. Integration and interconnection between different types of networks.

6. Learning and understanding the modern theory of data communication.

Syllabus Contents (Main topics):

Distributed models

Network operating systems

Data security and integrity

Client-server technology

WAP approaches

Internet and communication protocols

High-performance computer design focusing on networks

Multiprocessors, multi-computers and networks

Processor-memory and processor-processor communication

Network topology, routing methods, flow control

Router microarchitecture, and performance analysis

High-speed networking

ATM

Optical networks

Wireless systems and networks

Administration and management of LANs

Network security

Teaching and Learning Methods:

Lectures, workshops, biweekly home works.

A large course work during the semester.
Assessment Procedure:

Final exam in a form of multiple choice test: 60% of the general assessment.

Course work evaluation: 30%. Home works evaluation: 10%
Indicative Sources:

Books:

1. Bertsekas D., Gallager R., Data Networks, Prentice Hall, 1991.

2. Halsall, F. Data Communications, Computer networks and Open Systems 4th Ed., Addison-Wesley 1996.

3. Halsall, F. Multimedia Communications Applications, Networks, Protocols and Standards Pearson Education Ltd. 2001.

4. Huitema C., Routing in the Internet, Prentice Hall PTR, 2000

5. Keshav S., An Engineering Approach to Computer Networking, Addison-Wesley Pub Co, 1997

6. Partridge C., Gigabit Networking, Addison-Wesley Pub Co, 1994

7. Paul S., Multicasting on the Internet and its Applications, Kluwer Academic Publishers, 2003

8. Peterson L., Davie B., Computer Networks: A Systems Approach, Morgan Kaufmann, 1999.

9. Proebster, W. E. Rechner -netze Technik Protokolle Systeme Anwendungen - R. Oldenburg Verlag Muenchen 1998.

10. Stallings, W. Data and Computer Communications 6th ed., 2000.

11. Stevens W. R., TCP/IP Illustrated, Volumes 1-3, Addison Wesley Professional, 2002

12. Tanenbaum A., Computer Networks, Prentice Hall PTR, 2002

13. Walrand J., Communication Networks: A First Course, McGraw-Hill Science / Engineering / Math, 1998

14. Walrand J., Varaiya P., High-Performance Communication Networks, Morgan Kaufmann, 1999

URLs (Web sites):

http://www.protocols.com -
http://www.rad.co.il - Rad University
http://www.data.com/ - tutorials

http://www.iec.org/ - tutorials

http://www.cisco.com - tutorials

Ethernet – Charles Spurgeon site

Course Title:
Graphical User Interface Design

Course Code:
GUID

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:
Knowledge-Based Systems
Learning outcomes:

Upon completion of this course, students should be able to:

1. demonstrate a critical awareness of current techniques of task analysis, dialogue design, user interface implementation and ergonomic design;

2. perform each of these within a specific human-computer work environment;

3. critically appraise methods and guidelines for HCI evaluation, and recommend and justify a set of evaluation techniques and evaluative criteria;

4. demonstrate knowledge of a wide range of interfacing techniques and styles by designing and evaluating an improved design for a given user interface.

Aims & Objectives:

The aims of this course are:

1. to equip students with an integrated view of modern human-computer interactions;

2. to explore theoretical and practical issues in the design, implementation and evaluation of user interfaces and human-computer interaction;

3. to discuss user interface concerns that are fundamental to the success of any software systems, e.g. task analysis, dialogue design, user support;

4. to discuss social and ethical aspects of human-computer interaction.

Syllabus Contents (Main topics):

Scenario design

Scenario development tools

Media authoring

Implementation through wizards

Intelligent modelling and simulation systems

Virtual reality

User modelling

Interactive 3D Development

Intelligent interfaces

VAR and intelligent interfaces

Model-based user interface development

Graphical query languages

Linguistic approach to user interface design

Context-specific guidelines to user interface design

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a real project, about human-computer interaction.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Dix A.J., Human-Computer Interaction, Prentice-Hall, (1998).

2. Faulkner C., The essence of human-computer interaction, Prentice-Hall, (1997).

3. Hobbs D., Moore D., Human-Computer Interaction, Financial Times Management, (1998).

4. Shneiderman B., Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison-Wesley, (1998).

URLs (Web sites)

www.hcibib.org/
www.cs.umd.edu/projects/hcil/
www.ida.liu.se/labs/aslab/groups/um/hci/
www.hcii.cs.cmu.edu/
www.hcim.com/
stanford.edu/hci.html
www.hci-journal.com/
www.cs.cmu.edu/~amulet/papers/uihistory.tr.html
www.hci.cornell.edu/
www.cs.york.ac.uk/hci/
www.degraaff.org/hci/
www.hci.uu.se/
Course Title:
Advanced Web Technologies

Course Code:
AWT

ECTS credits:
7
Course Status:
Core/elective

Prerequisites:
Network Technologies, Graphical User Interface Design
Learning outcomes:
Upon completion of this course, students should be able to:

1. understand fundamental and specific issues in programming for the Internet;

2. know about the pros and cons of alternative Web technologies; select and build the most suitable solution for a specific setup;

3. have practical experience in applying Web technologies.

Aims & Objectives:
The aims of this course are:

1. to provide an in-depth understanding of core and advanced Internet development topics, balancing between theoretical exposure and hands-on practice;

2. to focus on client- and server-side programming, developing e-solutions, using XML, collaboration technologies and information retrieval;

3. to provide extensive hands-on experience, the course could concentrate on one popular framework (Java, PHP or ASP.NET/ADO.NET) or a combination of these;

4. to equip students with knowledge and skills for developing real-world applications and graduate thesis.

Syllabus Contents (Main topics):
Commitment Nets in Software Process Improvement

Groupware Technology

Computer-supported cooperation

Testing Processes of Web Applications

Data mining

Distributed visual reasoning for information retrieval on the Web

Data management issues in CSCW systems

Web-based programming languages

Client-server technology

WAP approaches

Internet and communication protocols

XML

Information agent technology for the Internet

Internet Software Engineering

Web applications for E-Commerce

Web applications for E-Publishing

Web applications for E-Learning

Teaching and Learning Methods:
Lectures, Workshops, Individual or group assignments.
Assessment Procedure:
Based on assignment achievements, quizzes and exams.
Indicative Sources:
Books:

1. Deitel, Deitel and Nieto. Internet and World Wide Web How to Program, Prentice Hall, 2002.

2. Deitel, Deitel, Nieto, Lin and Sadhu. XML How To Program, Prentice Hall, 2001.

3. Hall M., L. Brown. Core Web Programming. Prentice Hall, 2001.

4. Kantardzic M., Data Mining: Concepts, Models, Methods and Algorithms. Wiley-IEEE Press, 2002.

5. Udell J., Practical Internet Groupware, O'Reilly and Associates, 1999.

URLs (Web sites):
Java documentation: http://java.sun.com
.NET documentation: http://msdn.microsoft.com/netframework
PHP documentation: http://www.php.net
Course Title:
Computer Vision and Simulation

Course Code:
CVS

ECTS credits:
5

Course Status:
Core/elective

Prerequisites:
Knowledge-Based Systems
Learning outcomes:

On completing this course, students will

1. have experience in implementing image processing and vision algorithms;

2. know the current techniques in image processing and computer vision and an awareness of their limitations;

3. have an appreciation of the underlying mathematical principles of computer vision;

4. have the ability to formulate solutions to problems in Computer Vision;

5. know the main principles, basic methods and specific tools for systems and processes modelling and simulation;
6. be able to design analytic and simulation models of computer systems, networks and processes on base of determine and stochastic techniques.
Aims & Objectives:

The aims of this course are:

1. to provide a grounding in the current research areas of computer vision;

2. to give an experience in implementing computer vision algorithms;

3. to provide an understanding of the range of processing components involved in image interpretation systems;

4. to introduce students to fundamental mathematical concepts and theories used in area of modelling (stochastic and discrete);

5. to present the special features of complex dynamic system, its structure and behaviour;

6. to compare the main methods for modelling and simulation and describe the basic principles of the model designing, adequacy, program realization, validation and implementation;

7. to present some actual practice models of real systems, networks and processes in computer engineering area.

Syllabus Contents (Main topics):

Numerical methods; Asymptotic methods

Combinatorial methods

Parallel algorithms

Distributed visual reasoning for information retrieval on the Web

Complex dynamic system

Modelling methods and algorithms

Testing the model adequacy

Simulation and animation methods

Simulation languages

Intelligent modelling and simulation systems

Rendering and animation

Non-linear animation

Virtual reality

Discrete system simulation

Validation of simulation models

Information agent technology for the Internet

Interaction styles

User modelling

Interactive 3D Development

Model-based user interface development

Teaching and Learning Methods:

The lectures clarify the theoretical part of the topics and give many examples. This gives the students the opportunity to prepare for workshops in advance and to work independently.
Assessment Procedure:

Written exam. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Bossel H., Modelling and Simulation, A K Petres, Ltd, 1994.
2. Duda R.O., Hart P.E., Stork D.G., Pattern Classification (2nd Edition), Wiley-Interscience, 2000, ISBN: 0471056693.

3. Flynn, D., O. Diaz. Information Modelling, Prentice Hall, 1996.

4. Forsyth D.A., Ponce J., Computer Vision: A Modern Approach, Prentice Hall, 2002, ISBN: 0130851981 .

5. Garrido, J. Performance Modeling of Operating Systems Using Object-Oriented Simulation – A Practical Introduction. Kluwer Academic Publ., 2000.

6. Hill, D. Object-Oriented Analysis and Simulation Modelling. Addison-Wesley, 1996.
7. Mari, J.-Fr., R. Schott. Probabilistic and Statistical Methods in Computer Science, Kluwer Academic Publ.,2001.

8. Parker J.R., Practical Computer Vision Using C, John Wiley & Sons, 1993.

9. Theodoridis S., Koutroumbas K., Pattern Recognition, Second Edition, Academic Press, 2003, ISBN: 0126858756.

URLs (Web sites):

iris.usc.edu/Vision-Notes/bibliography/contents.html
www.cs.hmc.edu/~fleck/computer-vision-handbook/
www.academicpress.com/cviu
www.cfar.umd.edu/cvl/
www.sciencedirect.com/science/journal/10773142
rvl4.ecn.purdue.edu/~kak/cviu.htm
www.cvv.com/
www.cvc.uab.es/
www.scs.org/
www.soc.surrey.ac.uk/research/simsoc/simsoc.html
www.csl.mete.metu.edu.tr/
www.scs-europe.org/
Course Title:
Advanced Mathematics

Course Code:
AMA

ECTS credits:
5

Course Status:
Core/elective
Prerequisites:

Learning outcomes:

After this course the students will understand the wide area of applicable mathematical concepts that serve computer and technical sciences.

Aims & Objectives:

1. Give knowledge in many straightforward applicable mathematical models.

2. Provide a basis for mathematical modelling in technical sciences and for using systems as MATLAB.

Syllabus Contents (Main topics):

Vector algebra

Computing sums

Line and surface integrals

Scalar and vector potentials

Orthogonal curvilinear coordinates

Partial differential equations

Deriving functions

Operation calculus and application

Numerical methods

Theory of probability

Discrete probability theory

Representation of discrete functions

Random variable generation

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Apostol T.M., Calculus (one variable calculus, with an introduction to linear algebra), John Wiley & Sons, 1967.

2. Apostol T.M., Calculus (multi variable calculus and linear algebra, with applications to differential equations and probability), John Wiley & Sons, 1969.
3. Grinstead C., J. Snell, Introduction to probability, 1996.
4. Sean Mauch, Introduction to method of applied mathematics – advanced mathematical methods for scientists and engineers, 2002.
5. Swokowski E., J. Cole, D. Pence, M. Olinick, Calculus of Several Variable, 1995.
URLs (Web sites):

Any site responding to the main topics keys words.
Course Title:
Parallel Systems

Course Code:
PSYS

ECTS credits:
5

Course Status:
Core/elective
Prerequisites:
Advanced Computer Architectures, Performance Analysis of Computer Systems and other courses connected to the basic architectural problems
Learning outcomes:

After this course the students will know the main principles of parallel data processing, architectural special features of parallel and distributed systems and different techniques and tools for data synchronization, protection, communication and performance investigation and monitoring.

Aims & Objectives:

1. Systemise student’s knowledge about parallel computer systems and different computational structures, such as the architectural special features of parallel and distributed systems.

2. Introduce the basic principles and tools for parallel data processing (parallelism, algorithms, languages and techniques for data synchronization).

3. Present the principles of concurrency and control, such as the basic methods for workload investigation and performance monitoring.

Syllabus Contents (Main topics):

Parallel algorithms. Parallel computer systems

Homogeneous computational structures. Transputers

Data parallelism. High-level language constructs for parallel programming

Decomposition techniques. Parallel computing paradigms

Concurrency and control

Teaching and Learning Methods:

Lectures (with slides, multimedia projector) and additional auxiliary text and electronic materials.

Workshops (based on manual with instructions) with a tutorial for every workshop topic.

Software environment for parallel computing.

Assessment Procedure:

Written exam.

Indicative Sources:

Books:

1. Akl, S. Parallel Computations: Models and Methods, Prentice Hall, 1997.

2. Culler, D., J. Pal Singh, A. Gupta. Parallel Computer Architectures: A Hardware/Software Approach. Morgan Kaufman, 1998.

3. Leighton T. Introduction to Parallel Algorithms and Architectures: Algorithms and VLSI. Morgan Kaufman, 2003.

4. Roscoe, A. W. The Theory and Practice of Concurrency., Prentice Hill, 1997.

5. Sweeney, P. Parallel Processing: the Transputer and its Applications, Addison-Wesley, 1994.

6. Stone, H. High-Performance Computer Architectures. N.Y., 1990.

URLs(web sites):

www.mkp.com/CA3/
Course Title:
Advanced Computer Architectures

Course Code:
ACA

ECTS credits:
5

Course Status:
Core/elective
Prerequisites:

Learning outcomes:

After this course the students will know the main principles of data representation and computer processing on arithmetic and logic level, such as the basic computer architectures for computer systems building and its characteristics.
After this course the students will know the main principles of parallel machines in Flynn’s classification (SISD, SIMD, MISD, MIMD) and the main approaches for design and operation of multiprocessor systems, conventional and non-conventional machines.
Aims & Objectives:

The aims of this course are:

1. to systemise student’s knowledge about high performance architectural models;

2. to introduce some methods for performance investigation;

3. to present the special features of different high performance architectures and the principles of superscalar and multipipeline machines, synchronous parallel machines, multiprocessors, data flow machine);

4. to describe the principles of I/O and memory system organization in non-conventional architectures.

Syllabus Contents (Main topics):

High performance machines & special purpose processors

RISC computers

Superscalar processors

VLIW processors

Parallel processing and pipelining

Architectures for parallel computation

Energy aware computing

Data flow architectures

High performance I/O

Teaching and Learning Methods:

Lectures (with slides, multimedia projector) and additional auxiliary text and electronic materials for discussion; web site of the course; laboratory work (based on manual with instructions) with a tutorial for every laboratory them; program medium for simulation and exemplary models; laboratory medium for e-learning
Assessment Procedure:

Written exam.
Indicative Sources:

Books:

1. Dutta-Roy A., Computers, IEEE Spectrum, Jan. 1999, p.46-51.

2. Hennessy, J.L., D.P. Patterson. Computer Architecture – A Quantitative Approach (3rd edition), MK Publ., 2003.
3. Kant K., Introduction to Computer Systems Performance Evaluation, McGraw Hill, 1992

4. Stalling W., Computer Organisation and Architecture: Design and Performance (5th Edition), Prentice Hall, Inc. 2000

5. Stalling W., Computer Organization and Architecture: Principles of Structure and Function (2nd edition), McMillan Publ., 1990

URLs (Web sites):

www.mkp.com/CA3/
Course Title:
Performance Analysis of Computer Systems

Course Code:
PACS

ECTS credits:
5

Course Status:
Core/elective
Prerequisites:
Advanced Mathematics, Advanced Computer Architectures
Learning outcomes:

Upon completion of this course, students should be able to:

1. recognise and solve dimensioning problems in planning the capacity in computer systems;
2. evaluate different modelling approaches;
3. gain insight into the behaviour of the considered systems;
4. compare model creation and solution, and work with existing software tools which are used for model creation and solution.
Aims & Objectives:

The aims of this course are:

1. to discuss a practical, problem-oriented style which appeals immediately to engineers engaged in real-world design and analysis;
2. to introduce to applicable methodology of computer system analysis, including Measurement Techniques and Tools, Probability and Statistical Methods, Experimental Design and Analysis, Simulation, and Queuing Models;
3. to consider different modeling approaches;
4. to study models for performance analysis and the relevant solving techniques and software tools;

5. to provide the knowledge and examples that are needed to gain insight in performance aspects of information systems, and how performance problems can be approached.

6. to present the problems and principles which are the result of real experience and not academic speculation;
7. to combine the pragmatic with the analytical approach to produce a usable methodology which is presented in a clear and highly motivated style, full of practical examples and case studies.
Syllabus Contents (Main topics):

Performance analysis models

Evaluation & Project progress

Metrics for quality and concurrency in object-based systems

Distributed models

Queuing theory

Markov models

Process Metamodelling

Object modelling environments

Modelling methods and algorithms

Rendering and animation

Validation of simulation models

Modelling storage

Multiprocessor scheduling and load sharing

Real-time operating systems

Modelling network behaviour

Modelling locks

Modelling critical sections

Modelling concurrency

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about performance analysis of computer systems.
Assessment Procedure:

Based on a series of workshops, which will be handed out before the end of the course. It is expected that these workshops will be worked out in groups of (two) students and returned to the lecturer before a certain date.

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Hennessy, J.L., D.P. Patterson. Computer Architecture – A Quantitative Approach (3rd edition), MK Publ., 2003.
2. Kant K., Introduction to Computer Systems Performance Evaluation, McGraw Hill, 1992.

3. Latino R.J., K. Latino, Root Cause Analysis: Improving Performance for Bottom-Line Results, CRC Press, 2002, ISBN: 084931318X.

4. Jain R., The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, Wiley- Interscience, New York, 1991.

5. Joines S., R. Willenborg, K. Hygh, Performance Analysis for Java Websites, Addison-Wesley, 2003.
6. Shirazi J., Java Performance Tuning, O'Reilly & Associates, 2003, ISBN: 0596003773.

URLs (Web sites):

www.cs.washington.edu/homes/lazowska/qsp/
www-pablo.cs.uiuc.edu/
www.csl.cornell.edu/~daehyun/resume/Resume.pdf
www.sigmetrics.org/
www.eecs.harvard.edu/vino/perf/
wwwtss.cs.utwente.nl/dg/kam/
www.ee.princeton.edu/people/faculty-t.php
www.ics.forth.gr/dsl/publications.html
www.c3.lanl.gov/par_arch/Projects.html
Course Title:
Software Planning

Course Code:
SP

ECTS credits:
5

Course Status:
Core/elective
Prerequisites:
Software Architectures
Learning outcomes:

Upon completion of this course, students should be able to:

1. plan major assignments such a senior thesis, or a dissertation;
2. plan creative projects such as science labs or class presentations;
3. learn about organizing, planning, teamwork and completing projects;
4. organise all project management data in a "spreadsheet" pattern for ease of understanding;

5. prepare PERT and Gantt charts;

6. group the activities into up to three levels, with resource cost summaries available at each level;

7. analyze and develop software installation and migration plans for application and system software. Areas of focus include application assessment, capacity planning, meeting performance requirements and protocol development.

Aims & Objectives:

The aims of this course are:

1. to validate the contents of data for exchange between systems, for use in applications, for use on websites, etc ;
2. determine differences between versions;
3. determine the differences between an As-Is and To-Be system architecture;
4. validate that the database system tables are compliant with the physical schema and the data model is compliant with the enterprise data model;
5. validate that data in a database is accurate and complete;
6. incorporate into an analysis of a software system one or more measurements that can be used to provide feedback to the development or business process, perform root cause analysis, track trends, and determine accountability.
Syllabus Contents (Main topics):

Design prototyping

Software integration strategies

Data integration strategies

Process Metamodelling

From object-process analysis to object-process design

Object-oriented software engineering

Process-based software engineering

Scenario planning

Scenario design

Managing object-oriented software development

Groupware Technology

Computer-supported cooperation

Evaluation & Project progress

Software Evolution Processes

Effectively Managing Process Diversity

Teaching and Learning Methods:

40% ex cathedra, 60% hands-on
The lecture topics give the main theoretic aspects of the considered problems. These are further developed in workshops by introducing case studies. Students gain experience, via a team project, about life-cycle development of software systems.
Assessment Procedure:

Written exam including a number of problems with a different degree of difficulty. The final mark is formed as a weighted average of the marks from the workshops and the exam.
Indicative Sources:

Books:

1. Booch G., Object-Oriented Analysis and Design with Applications, California: Benjamin/Cummings, (1994).

2. Gitman L.J., M.D. Joehnk, Personal Financial Planning with Financial Planning Software and Worksheets, South-Western College Pub., 2001, ISBN: 0030339626
3. Harris P., Project Planning Using Primavera SureTrak for Windows Version 2.0, Eastwood Harris Pty Ltd, 1999, ISBN: 0646379259.
4. Humphrey W.S., Introduction to the Team Software Process, Massachusetts: Addison-Wesley, (1999).

5. Marciniak J.J., Encyclopedia of Software Engineering, New York: John Wiley & Sons, Inc., (1994).

6. Menasce D.A., V. A. F. Almeida, Capacity Planning for Web Services: Metrics, Models, and Methods, Prentice Hall PTR, 2001, ISBN: 0130659037.
7. Pfleeger S., Software Engineering: Theory and Practice, New Jersey: Prentice Hall, (1998).

URLs (Web sites):

www.bplans.com/
www.ibm.com/servers/eserver/iseries/support/planning/
star-www.rl.ac.uk/Software/planning.htm
www.adesoft.com/
www.paloalto.com/ps/bp/
www.projectkickstart.com/
www.silsoe.cranfield.ac.uk/nsri/services/software_planning.htm
www.rsssolutions.com/
Course Title:
Distributed Systems

Course Code:
DS

ECTS credits:
5
Course Status:
Core/elective
Prerequisites:
Advanced Computer Architectures, Performance Analysis of Computer systems, Parallel Systems

Learning outcomes:
Upon completion of this course, students should be able to:

1. understand the underlying principles of distributed systems;

2. discuss specific issues in geographically or architecturally distributed databases;

3. apply the theory of distributed systems to build and manage distributed database applications.

Aims & Objectives:
The aims of this course are:

1. to provide an in-depth, systematic treatment of key concepts and issues in distributed computing;

2. to cover the design and implementation of distributed databases, focusing on concurrency, integrity, security and recovery, integration of diverse data sources;

3. to offer a well-balanced combination of fundamental knowledge and hands-on experience (SQL programming, using Oracle or Microsoft solutions as case studies).

Syllabus Contents (Main topics):
Queuing theory

Distributed algorithms

Distributed models

Data security and integrity

Distributed database systems

Query processing in distributed databases

Optimizing object queries

Semantic modelling in multimedia databases

Data mining

Distributed visual reasoning for information retrieval on the Web

Data management issues in CSCW systems

Teaching and Learning Methods:
Lectures; Workshops; Individual or group assignments.
Assessment Procedure:
Based on assignments achievements, quizzes and exams.

Indicative Sources:
Books:

1. Coulouris G., J. Dollimore and T. Kindberg, Distributed Systems: Concepts and Design, Addison-Wesley, 2001.

2. Elmasri R., S. Navathe, Fundamentals of Database Systems, Addison-Wesley, 2000.

3. Garcia-Molina H., J. Ullman and J. Widom. Database Systems: The Complete Book, Prentice Hall, 2002.

4. Kantardzic M., Data Mining: Concepts, Methods and Algorithms. Wiley-IEEE Press, 2002.

5. Ozsu M., P. Valduriez. Principles of Distributed Database Systems, Prentice Hall, 1999.

6. Silberschatz A., G. Cagne, P. Galvin, Operating Systems Concepts with Java, Wiley & Sons, 2003.

URLs (Web sites):
CORBA resources: http://www.corba.org
Microsoft SQL Server: http://msdn.microsoft.com/sql
Oracle resources: http://www.oracle.com
www.dg.com/newdocs1/ccnuma/index.html#a
www.dg.com/newdocs1/ccnuma/iw1_6_97.html
www.dg.com/news/press_releases/11_4_96.html
Course Title:
Hypermedia & Multimedia

Course Code:
HMM

ECTS credits:
5

Course Status:
Core/elective
Prerequisites:
Graphical User Interface Design
Learning outcomes:

On completing this course the students will:

1. be familiar with different multimedia elements and compression methods;

2. be able to use modern multimedia authoring systems, multimedia databases, agent technologies and web-based programming languages for creating attractive multimedia applications.

Aims & Objectives:

1. The course will introduce the principles and current technologies of hypermedia and multimedia systems.

2. It will cover technical areas, such as compression algorithms of multimedia elements, multimedia databases, multimedia authoring software and web-based programming languages.

Syllabus Contents (Main topics):

Algorithms for compression and decompression

Multimedia software engineering

Media authoring

Semantic modelling in multimedia databases

Web-based programming languages

XML

Information agent technology for the Internet

VAR and intelligent interfaces

Automatic generation of hypermedia

Intelligent agent technologies

Teaching and Learning Methods:

The lectures provide the theoretical basis. The workshops involve every student to solve tasks concerning work with different multimedia elements and multimedia application development.

Assessment Procedure:

Written test plus hands-on creating a multimedia application. The final mark is a weighted average of the test (0.40) and the hands-on (0.60).

Indicative Sources:

Books:

1. McGloughlin S., Multimedia: Concepts and Practice, ISBN: 0130575062, Prentice Hall, 2001.

2. Rees M., A. White, B. White: Designing Web Interfaces Interactive Workbook, ISBN: 0130858978, Prentice Hall, 2001.

3. Steinmetz R., K. Nahrstedt: Computing, Communications & Applications, ISBN: 0133244350, Prentice Hall, 1995, USA.

URLs (Web sites):

http://www.cs.sfu.ca/CourseCentral/365/li/index_prev.html
http://bmrc.berkeley.edu/courseware/cs294/fall99/lectures/
http://www.cs.cornell.edu/Info/Faculty/bsmith/mmsyl.htm
