Fuzzifying P Systems

Apostolos Syropoulos Greek Molecular Computing Group Xanthi, Greece E-mail: apostolo@ocean1.ee.duth.gr

Fuzzy set theory is a "free-floating" theory, that is, a theory that is applicable in a wide variety of differen contexts. The term was coined by the Nobel physics laureate Steven Weinberg.

- Fuzzy set theory is a "free-floating" theory, that is, a theory that is applicable in a wide variety of differen contexts. The term was coined by the Nobel physics laureate Steven Weinberg.
- The essence of fuzzy set theory is that elements belong to a set with a membership degree, which is a number that (certainly!) belongs to the unit interval.

- Fuzzy set theory is a "free-floating" theory, that is, a theory that is applicable in a wide variety of differen contexts. The term was coined by the Nobel physics laureate Steven Weinberg.
- The essence of fuzzy set theory is that elements belong to a set with a membership degree, which is a number that (certainly!) belongs to the unit interval.
- Fuzzy set theory is considered by many as a way to simplify the man-machine communication.

- Fuzzy set theory is a "free-floating" theory, that is, a theory that is applicable in a wide variety of differen contexts. The term was coined by the Nobel physics laureate Steven Weinberg.
- The essence of fuzzy set theory is that elements belong to a set with a membership degree, which is a number that (certainly!) belongs to the unit interval.
- Fuzzy set theory is considered by many as a way to simplify the man-machine communication.
- Nevertheless, fuzzy set theory is useful to describe everyday experiences.

Why should we fuzzify P systems?

A P system is a mathematical abstraction of living systems.

Why should we fuzzify P systems?

- A P system is a mathematical abstraction of living systems.
- Living systems are inherently "fuzzy" (in the broad sense of the word).

Why should we fuzzify P systems?

- A P system is a mathematical abstraction of living systems.
- Living systems are inherently "fuzzy" (in the broad sense of the word).
- Ergo, fuzzy P systems may provide a new way to view and study things.

How can we fuzzify P systems?

Can we fuzzify the membrane structure? Yes, but we haven't studied this option yet.

How can we fuzzify P systems?

- Can we fuzzify the membrane structure? Yes, but we haven't studied this option yet.
- Do fuzzy rewriting rules provide new insight? No: Fuzzy and Crisp Turing machines are equivalent.

How can we fuzzify P systems?

- Can we fuzzify the membrane structure? Yes, but we haven't studied this option yet.
- Do fuzzy rewriting rules provide new insight? No: Fuzzy and Crisp Turing machines are equivalent.
- Thus, P systems can be fuzzified by substituting crisp data with fuzzy data.

 Yager's fuzzy sets are not adequate: they are not fuzzy enough.

- Yager's fuzzy sets are not adequate: they are not fuzzy enough.
- A fuzzy multiset is a multiset where elements may belong with various degrees to the multiset and may have different instances.

- Yager's fuzzy sets are not adequate: they are not fuzzy enough.
- A fuzzy multiset is a multiset where elements may belong with various degrees to the multiset and may have different instances.
- In the theory of P Systems what really counts is the number of times an element occurs.

- Yager's fuzzy sets are not adequate: they are not fuzzy enough.
- A fuzzy multiset is a multiset where elements may belong with various degrees to the multiset and may have different instances.
- In the theory of P Systems what really counts is the number of times an element occurs.
- Ergo, we need to fuzzify the number of occurrences.

- Yager's fuzzy sets are not adequate: they are not fuzzy enough.
- A fuzzy multiset is a multiset where elements may belong with various degrees to the multiset and may have different instances.
- In the theory of P Systems what really counts is the number of times an element occurs.
- Ergo, we need to fuzzify the number of occurrences.
- Multi-fuzzy sets are the mathematical structures we need.

Formalities

Suppose that X is a (fixed) universe, then a multi-fuzzy set is a function A : X → N₀ × I, where N₀ is the set of all positive integers including zero and I is the unit interval [0, 1]. The expression A(x) = (n, i) denotes that the degree to which x occurs n times in the multi-fuzzy set is equal to i.

Formalities

- Suppose that X is a (fixed) universe, then a multi-fuzzy set is a function A : X → N₀ × I, where N₀ is the set of all positive integers including zero and I is the unit interval [0, 1]. The expression A(x) = (n, i) denotes that the degree to which x occurs n times in the multi-fuzzy set is equal to i.
- Starting from a multi-fuzzy set \mathcal{A} , we can define the following two functions: the *multiplicity* function $\mathcal{A}_m : X \to \mathbb{N}_0$ and the *membership* function $\mathcal{A}_\mu : X \to I$. Obviously, if $\mathcal{A}(x) = (n, i)$, then $\mathcal{A}_m(x) = n$ and $\mathcal{A}_\mu(x) = i$.

P Systems with Fuzzy Data

A P system with fuzzy data is a construct

$$\Pi_{\rm FD} = (O, \mu, w^{(1)}, \dots, w^{(m)}, R_1, \dots, R_m, i_0, \lambda)$$

where

• $w^{(i)}: O \rightarrow \mathbb{N}_0 \times I$, $1 \le i \le m$, are functions that represent multi-fuzzy sets over O associated with each region *i*;

P Systems with Fuzzy Data

A P system with fuzzy data is a construct

$$\Pi_{\rm FD} = (O, \mu, w^{(1)}, \dots, w^{(m)}, R_1, \dots, R_m, i_0, \lambda)$$

where

- $w^{(i)}: O \to \mathbb{N}_0 \times \mathbb{I}, 1 \le i \le m$, are functions that represent multi-fuzzy sets over O associated with each region i;
- $\lambda \in [0, 1]$ is a threshold parameter, which is used in the final estimation of the computational result.

P Systems with Fuzzy Data

A P system with fuzzy data is a construct

$$\Pi_{\rm FD} = (O, \mu, w^{(1)}, \dots, w^{(m)}, R_1, \dots, R_m, i_0, \lambda)$$

where

- $w^{(i)}: O \rightarrow \mathbb{N}_0 \times \mathbb{I}, 1 \leq i \leq m$, are functions that represent multi-fuzzy sets over O associated with each region i;
- $\lambda \in [0, 1]$ is a threshold parameter, which is used in the final estimation of the computational result.
 - All other components are similar to the "crisp" case.

Is it necessary to defuzzify the result?

 Clearly, one can go on and defuzzify the final result, but...

Is it necessary to defuzzify the result?

- Clearly, one can go on and defuzzify the final result, but...
- the initial results may not be the result of some fuzzification process!

Is it necessary to defuzzify the result?

- Clearly, one can go on and defuzzify the final result, but...
- the initial results may not be the result of some fuzzification process!
- Ergo, we can compute real numbers in an unexpected way!

An example

The output of the system above is the number n/m.

Hypercomputation—The Church-Turing thesis is false.

- Hypercomputation—The Church-Turing thesis is false.
- Trail-and-error machines are hypermachines!

- Hypercomputation—The Church-Turing thesis is false.
- Trail-and-error machines are hypermachines!
- The human mind according to Lucas, Penrose, Kugel, Bringsjord and others is a hypermachine.

- Hypercomputation—The Church-Turing thesis is false.
- Trail-and-error machines are hypermachines!
- The human mind according to Lucas, Penrose, Kugel, Bringsjord and others is a hypermachine.
- Computing real numbers is a step towards hypercomputation.

- Hypercomputation—The Church-Turing thesis is false.
- Trail-and-error machines are hypermachines!
- The human mind according to Lucas, Penrose, Kugel, Bringsjord and others is a hypermachine.
- Computing real numbers is a step towards hypercomputation.
- P systems are interactive, thus, according to Wegner, they are hypermachines.

That's all!

I thank the speaker and all of you! Please send me questions and/or suggestions to apostolo@ocean1.ee.duth.gr.